IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of: Turtle Bear Holdings, LLC Serial No.: 18/114,381 Filing or 371(c) Date: February 27, 2023 Entitled: Psilocybin Compositions Confirmation No.: 9425 Group No.: Examiner:

THIRD-PARTY PRE-ISSUANCE SUBMISSION

Examiner:

The following documents, which are also identified in the Form PTO/SB/429 filed herewith, are submitted for your consideration as being of potential relevance to the examination of the present application

- U.S. Pat. App. Pub. No. 2008/0194553 "Use of Compounds That Are Able To Increase The Serum Igf-1 Level For The Preparation Of A Therapeutical Composition For Treatment Of Various Disease States Associated With A Reduced Igf-1 Serum Level In Humans And Animals" (Published August 14, 2008)
- PSILOLOVER333, "Virgin Beauty Blossoming Consciousness Mushrooms P. cubensis" January 13, 2016; retrieved from Erowid Experience Vaults. <u>https://erowid.org/experiences/exp.php?ID=107678</u>, retrieved January 13, 2016
- 3. WIECZOREK (2015) "Chapter 5 Bioactive Alkaloids of Hallucinogenic Mushrooms" Studies in Natural Products Chemistry. 46: 133-168
- 4. CARTZ (1994) "Extraction and analysis of indole derivatives from fungal biomass" Journal of Basic Microbiology. 34(1): 17-22
- 5. MATTILA (2001) "Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms" Journal of Agricultural and Food Chemistry. 49(5): 2343-2348
- EROWID, "Psilocybin, Psilocin, and Magic Mushroom Dosage" January 18, 2013; retrieved from Erowid; retrieved from Web Archives. <u>https://web.archive.org/web/20130118160500/https:/erowid.org/plants/mushrooms_dose.</u> <u>shtml</u>, retrieved January 18, 2013
- 7. U.S. Pat. App. Pub. No. 2010/0028469 "Extracts of Cranberry And Methods Of Using Thereof" (Published February 4, 2010)
- CHYCHO, "The Boundary Salvia divinorum, Fasting & Mushrooms P. cubensis" April 9, 2007; retrieved from Erowid; retrieved from Web Archives. <u>https://web.archive.org/web/20220916125803/https://www.erowid.org/experiences/exp.php?ID=5323</u> <u>9</u>, retrieved April 9, 2007
- 9. Intl. Pat. Doc. No. WO2016001922 "METHODS, DEVICES AND SYSTEMS FOR PULMONARY DELIVERY OF ACTIVE AGENTS" (Published January 7, 2016)
- U.S. Pat. App. Pub. No. 2014/0220150 "Integrative Fungal Solutions For Protecting Bees And Overcoming Colony Collapse Disorder (CCD): Methods And Compositions" (Published August 7, 2014)

Attached hereto is a claim chart providing a concise description of the relevance of each reference in the document list of the elements of the presently pending claims.

U.S.S.N. 18/114,381	References
Pending Claims	
1. A method for reducing	1. U.S. Pat. App. Pub. No. 2008/0194553 "Use of Compounds That
symptoms of depression in a	Are Able To Increase The Serum Igf-1 Level For The Preparation Of
subject in need thereof, the	A Therapeutical Composition For Treatment Of Various Disease
method comprising:	States Associated With A Reduced Igf-1 Serum Level In Humans And
administering a dosage form	Animals" (Published August 14, 2008)
comprising: 0.1 to 10 mg of	
baeocystin, norbaeocystin,	From claim 1 "A method, comprising: using one or more
salts thereof, or combinations	compounds that are capable of activating the hypothalamus in an
thereof; and 1 to 50 mg of	individual to increase the serum level of Growth Hormone Releasing
niacin; sufficient to reduce	Hormone (GHRH), which in turn leads to an increase in the secretion
the symptoms of depression	of growth hormone (GH) and the subsequent rise of the serum level of
in the subject.	insulin-like growth factor 1 (IGF-1) for the preparation of a
	therapeutical composition for the treatment of serious fatigue and
	exhaustion symptoms, burn-out, chronic fatigue syndrome,
	depression, Alzheimer disease, irritated bowel syndrome,
	osteoporosis, type 2 diabetes, or for anti-aging therapy, immune
	therapy and for stimulating recovery after physical exercise in humans
	or for stimulating growth and the immune system in animals."
	From claim 2 "The method as claimed in claim 1, wherein the
	compound is a compound that, when administered to a human or
	animal individual to be treated, leads to an increased level of indole
	acetic acid(IAA) in the human or animal body in comparison to the
	level of indole acetic acid in the same human or animal body prior to
	administration of the compound."
	From claim 5 "The method as claimed in claim 1, wherein the
	compound is a precursor of indole acetic acid selected from the group
	consisting of tryptophan, 4-hydroxytryptophan, 4-methoxy-
	tryptophan, 5-hydroxytryptophan, 5-methoxytryptophan, 6-
	hydroxytryptophan, 6-methoxytryptophan, 7-hydroxy-tryptophan, 7-
	methoxytryptophan, hypaphorine, tryptamine, 4-hydroxytryptamine,
	4-methoxytryptamine, psilocin (4-hydroxy, dimethyl tryptamine).
	psilocybin (4-phosphate, dimethyl- tryptamine), baeocystin , serotonin
	(5hydroxytryptamine) 5-methoxytryptamine, bufotenine
	(dimethylserotonine).O-methylbufotenine, melatonin, 6-
	hydroxytryptamine, 6-methoxy-tryptamine, 7-hydroxytryptamine, 7-
	methoxytryptamine, indole butyric acid and indole-3-pyruvate."
	From claim 6 "The method as claimed in claim 3, wherein the
	compound is an analogue of the compounds listed in claim 3 or a
	metabolite of indole acetic acid that can be converted back into a

compound as listed in claim 3, and selected from the group
consisting of indole, indole-3-acetaldehyde, indole-3ethanol, indole-3-
aldehyde, indol-3-methanol, indole-3-carboxylic acid, 3-methylindole
(skatole): indole-3acetaldoxime, 3-aminomethylindole, N-
methylaminomethylindole gramine (N-dimethylaminomethylindole)
indexyla (indicana) indeleninenas 3 methylene 2 evindele abrine
isoton D isotin indican indica indumbin indicating 2 indeful
metnyl (skatolyl), niacin , 2-oxindole-3-acetic acid, 3-metnylene-2-
oxindole, oxindole-3-methanol, oxindole-3-aldehyde, oxindole-3-
carboxylic acid and 3-methyloxindole."
From claim 14 "The method as claimed in claim 2, wherein the
composition comprises 1 to 100 mg, of the active ingredient."
3. WIECZOREK (2015) "Chapter 5 - Bioactive Alkaloids of
Hallucinogenic Mushrooms" Studies in Natural Products Chemistry.
46: 133-168
From page 134 "In nature, indoles are probably the most often
occurring heterocyclic compounds, having medicinal importance
[3] Two simple indole alkaloids: psilocin (3-[2 (dimethylamino)
ethyl]-4-indolol) and psilocybin ([3-(2-dimethylaminoethyl)-1H-indol-
4 sull dilustration and pshocyoni ([5-(2-dimetriylaminocuryl)-111-indol-
4-yij dinydrogen phosphate) are present in many mushroom species.
i nese mushrooms are called hallucinogenic, psychedelic,
entheogenic, magic, medicinal, neurotropic, psychoactive, sacred,
or saint mushrooms [4]. Also other analogs of psilocybin, known as
baeocystin, norbaeocystin, bufotenin, and aeruginascin, were found
in hallucinogenic mushrooms. Hallucinogenic compounds were
chemically identified in mushrooms belonging to various genera,
e.g., Agrocybe, Conocybe, Galerina, Gymnopilus, Hypholoma,
Inocybe, Panaeolus, Psilocybe, Pholiotina, Pluteus, and Weraroa [5]."
2. PSILOLOVER333, "Virgin Beauty Blossoming Consciousness
Mushrooms - P. cubensis" January 13, 2016; retrieved from Erowid
Experience Vaults.
https://erowid.org/experiences/exp.php?ID=107678_retrieved January
13 2016
13, 2010
DOSE: 2 g oral Mushrooms - P cubensis
BODY WEIGHT: 135 lb
Psilocybin as Medicine

From webpage "At fourteen years old I was diagnosed with major depressive disorder, generalized anxiety, and Hashimoto's Disease... After being let down by modernized medicine I decided to teach myself about what was wrong with my body and my mind. I found many stories about psilocybin and LSD being used to treat/cure depression and anxiety... I was sitting alone in the next room when one of my sister's friends walked in with an ounce of **potent psilocybe** cubensis. I eagerly offered him some money in exchange for 2 grams of his fungi and he was pleased to oblige... Then, comforter to sheets, sheets to skin, skin to psilocybin energy, psilocybin energy to brain, brain to depression-killing lessons. I was shown how ignorant I had been... Psilocybin will change the world if only we as a society decide to harness it with graciousness. The strength that it holds in curing us of our ego driven world is profound! All we must do is recognize the virgin beauty that is our world and accept it by blossoming our consciousness."

4. CARTZ (1994) "Extraction and analysis of indole derivatives from fungal biomass" Journal of Basic Microbiology. 34(1): 17-22

From page 18 "Extraction: Samples (0.01 -0.1 g) of dried ground mushrooms were extracted with 5 to 20 ml of methanol for 0.5 to 12 hours by using a magnetic stirrer at room temperature. Under equal conditions the mixtures with aqueous acetic acid (CASALE 1985) and aqueous ethanol (psilocin) and methanol (psilocybin) (KYSILKA and WURST 1990. WURST *et al.* 1992) were used for extraction of the same batch of mushrooms."

From page 19 "In this investigation the extraction of psilocin, psilocybin and baeocystin with pure methanol was not completely after 30 min in all species and even 6 hours in analysis of P. cubensis and G. purpuratus. But the full extraction of the alkaloids from all mushrooms was reached after 12 hours. After this time no traces of indole derivatives could be detected after subsequent extraction of the fungal material with aqueous solutions of ethanol/methanol or acetic acid as well as with chloroform for psilocin. Baeocystin as incompletely methylated counterpart and possible precursor of psilocybin (GARTZ 1989a) was found in all species by using methanol but in some cases only in very small amounts (Table 1)."

Species	Psilocybin	Psilocin	Baeocystin
	(%, dry weight)	
P. semilanceata	0.98	_	0.34
P. bohemica	0.85	0.02	0.04
P. bohemica (cultivated)	0.93	0.04	0.02
P. cubensis	0.63	0.11	0.02
G. purpuratus	0.34	0.29	0.05
I. aeruginascens	0.40		0.21
P. cvanescens	0.32	0.51	0.02

5. MATTILA (2001) "Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms" Journal of Agricultural and Food Chemistry. 49(5): 2343-2348

From abstract "The aim of the study was to determine the contents of mineral elements (Ca, K, Mg, Na, P, Cu, Fe, Mn, Cd, Pb, and Se), vitamins (B1, B2, B12, C, D, folates, and niacin), and certain phenolic compounds (flavonoids, lignans, and phenolic acids) in the cultivated mushrooms Agaricus bisporus/white, Agaricus bisporus/brown, Lentinus edodes, and Pleurotus ostreatus. Selenium, toxic heavy metals (Cd, Pb), and other mineral elements were analyzed by ETAAS, ICP-MS, and ICP methods, respectively; vitamins were detected by microbiological methods (folates, niacin, and vitamin B12) or HPLC methods (other vitamins), and phenolic compounds were analyzed by HPLC (flavonoids) or GC-MS methods (lignans and phenolic acids)."

From page 2344 "Vitamins. Cultivated mushrooms were good sources of several vitamins (Table 1), particularly riboflavin, niacin, and folates."

Table 1. Vitamin Contents of Analyzed Cultivated Mushrooms (mg or μg/100 g)^a

Agaricus his	Agaricus hisporus/white Agaricus hisporus/bro			brown Lentinus edodes			Pleurotus ostreatus	
	portas minec	- inguineus bis	Agaricus bisporus/brown					
IW	dw	fw	dw	fw	dw	fw	dw	
1.3	17	1.6	21	2.1	25	1.6	20	
0.05	0.6	0.05	0.6	0.05	0.6	0.07	0.9	
0.39	5.1	0.33	4.2	0.15	1.8	0.20	2.5	
35	450	46	590	25	300	51	640	
3.3	43	4.1	53	2.6	31	5.2	65	
0.06	0.8	0.05	0.6	0.07	0.8	0.05	0.6	
< 0.02		< 0.02		0.1	1	0.02	0.3	
7.7		7.8		8.4		8.0		
dw, dry weigh	t.							
	Agarreus bis fw 1.3 0.05 0.39 35 3.3 0.00 <0.02 7.7 dw, dry weigh	Agaricus bisportus/white fw dw 1.3 17 0.05 0.6 0.39 5.1 35 450 3.0 43 0.06 0.8 <0.02	Agaricus bisporus/white Agaricus bisporus/white Agaricus bisporus/white fw dw fw 1.3 17 1.6 0.05 0.6 0.05 0.39 5.1 0.33 35 450 46 3.3 43 4.1 0.06 0.8 0.05 <0.02	Agaricus bisportus white Agaricus bisportus/brown fw dw fw dw 1.3 17 1.6 21 0.05 0.6 0.05 0.6 0.39 5.1 0.33 4.2 35 450 46 590 3.3 4.3 4.1 53 0.06 0.8 0.05 0.6 0.02 <0.02	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Agarreus bisportis/brown Agarreus bisportis/brown Leftitus edodes fw dw fw dw fw dw 1.3 17 1.6 21 2.1 25 0.05 0.6 0.05 0.6 0.05 0.6 3.3 43 4.1 53 2.6 31 0.06 0.05 0.6 0.07 0.8 300 3.3 43 4.1 53 2.6 31 0.06 0.05 0.0 0.07 0.8 34 <0.02	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

6. EROWID, "Psilocybin, Psilocin, and Magic Mushroom Dosage" January 18, 2013; retrieved from Erowid; retrieved from Web Archives.

	1.44 may // wash analy / 20120110160500/h44 may / analy 1 and / a landa					
	https://web.arcnive.org/web/20130118160500/https:/erowid.org/plants					
	/mushrooms/mushrooms_dose.shtml, retrieved January 18, 2013					
	From website "Psilocybe cubensis is a medium strength psilocybian					
	mushroom consisting of approximately .63% psilocybin and .60%					
	psilocin in dried wild mushrooms. Indoor cultivated mushrooms					
	tend to have higher concentrations. Note that potency of mushrooms					
	can vary greatly from one batch to the next. The following chart					
	shows annraximate and dasages for (dried) Psilocybe cubensis in					
	shows approximate of al dosages for (dried) I shoeybe cubensis in					
	Oral P. cubensis Dosages					
	Threshold .25 g 1/100 oz					
	Light .25 - 1 g 1/100 - 1/28oz					
	$\frac{1}{1} = \frac{1}{2} = \frac{1}$					
	Strong 25-5 g 1/10-1/602					
	Heavy $5 \pm a$ $1/6 \circ z \pm$					
	noavy org nooz					
2 . The method of claim 1,	4. CARTZ (1994) "Extraction and analysis of indole derivatives from					
wherein the dosage form	fungal biomass" Journal of Basic Microbiology. 34(1): 17-22					
further comprises 0.1 to 10						
mg of nsilocybin nsilocin	From nage 18 "Extraction: Samples (0.01 -0.1 g) of dried ground					
salts thereof or combinations	mushrooms were extracted with 5 to 20 ml of mathenol for 0.5 to					
sails increase, or combinations	12 hours by using a magnetic stimul at noom tomporature. Under					
mereor.	12 nours by using a magnetic surrer at room temperature. Under					
	equal conditions the mixtures with aqueous acetic acid (CASALE					
	1985) and aqueous ethanol (psilocin) and methanol (psilocybin)					
	(KYSILKA and WURST 1990. WURST <i>et al.</i> 1992) were used for					
	extraction of the same batch of mushrooms."					
	From page 19 "In this investigation the extraction of psilocin,					
	psilocybin and baeocystin with pure methanol was not completely					
	after 30 min in all species and even 6 hours in analysis of P. cubensis					
	and G purpuratus But the full extraction of the alkaloids from all					
	mushrooms was reached after 12 hours. After this time no traces of					
	indole derivatives could be detected after subsequent extraction of the					
	function material with acucous solutions of otheral/matheral or acotic					
	iungai materiai with aqueous solutions of ethanol/methanol of acene					
	acid as well as with chloroform for psilocin. Baeocystin as					
	incompletely methylated counterpart and possible precursor of					
	psilocybin (GARTZ 1989a) was found in all species by using					
	methanol but in some cases only in very small amounts (Table 1)."					

	Tuble 1					
	Amount of indole alkaloids in	fruiting bodies of diffe	rent species by usin	g pure methanol as solvent		
	Species	Psilocybin	Psilocin	Baeocystin		
		(%, dry weight)				
	P. somilancoata	0.08		0.24		
	P. bohemica	0.85	0.02	0.34		
	P. bohemica (cultivated)	0.93	0.04	0.02		
	G. purpuratus	0.34	0.29	0.02		
	I. aeruginascens P. cvanescens	0.40	0.51	0.21		
		0.02	0.01			
	6. EROWID, "Psilocy January 18, 2013; retr Archives. <u>https://web.archive.or</u> /mushrooms/mushroo From website "Psiloc mushroom consisting psilocin in dried wild tend to have higher co can vary greatly from	/bin, Psilocin, an ieved from Erov g/web/20130113 ms_dose.shtml, ybe cubensis is g of approxima I mushrooms. I oncentrations. N one batch to the	nd Magic Mu wid; retrieved <u>8160500/http</u> retrieved Jan a medium st tely .63% ps ndoor cultiva ote that potent e next. The fo	shroom Dosage" from Web s:/erowid.org/plants uary 18, 2013 trength psilocybian ilocybin and .60% ted mushrooms ucy of mushrooms ollowing chart		
	shows approximate of	oral dosages for	r (dried) Psil	ocvbe cubensis in		
	grams "		(
	gi anis.					
	Oral P. cubensThreshold.25 gLight.25 - 1 gCommon1 - 2.5 gStrong2.5 - 5 gHeavy5 + g	is Dosages 1/100 oz 1/100 - 1/28oz 1/28 - 1/10oz 1/10 - 1/6oz 1/6oz +				
3 . The method of claim 1,	1. U.S. Pat. App. Pub.	No. 2008/0194	553 "Use of	Compounds That		
wherein the dosage form	Are Able To Increase	The Serum Igf-	1 Level For 7	The Preparation Of		
further comprises one or	A Therapeutical Com	nosition For Tre	atment Of V	arious Disease		
more phormacoutically	States Associated Wit	h A Deduced Ic	f 1 Sorum I a	wel In Humans And		
	States Associated with	II A Reduced Ig	1-1 Setuiii Le	ivel III Humans And		
acceptable excipients	Animals" (Published A	August 14, 2008	3)			
comprising selected from						
buffering agents,	From [0032] "The con	nposition of the	invention is	preferably in the		
antimicrobial preservatives,	form of a capsule , but	t other dosage for	orms, preferal	oly oral dosage		
antioxidants, suspension	forms, such as tablets	, oral suspensio	ons, oral emu	lsions, oral fluids,		
agents, a tablet or capsule	powders, lozenges, na	stilles, pills, etc.	., are also pos	ssible. The		
diluent or a tablet	composition may for	example take the	e form of a fo	od supplement or a		
disinte anaut	where a section 1 and			ou supplement of a		
disintegrant.	pharmaceutical compo	osition.				

From claim 17 "Therapeutical composition comprising a suitable diluent, carrier or excipient and one or more compounds as listed in claim 3."

From claim 1 "A method, comprising: using one or more compounds that are capable of activating the hypothalamus in an individual to increase the serum level of Growth Hormone Releasing Hormone (GHRH), which in turn leads to an increase in the secretion of growth hormone (GH) and the subsequent rise of the serum level of insulin-like growth factor 1 (IGF-1) for the preparation of a therapeutical composition for the treatment of serious fatigue and exhaustion symptoms, burn-out, chronic fatigue syndrome, depression, Alzheimer disease, irritated bowel syndrome, osteoporosis, type 2 diabetes, or for anti-aging therapy, immune therapy and for stimulating recovery after physical exercise in humans or for stimulating growth and the immune system in animals."

From claim 2 "The method as claimed in claim 1, wherein the compound is a compound that, when administered to a human or animal individual to be treated, leads to an increased level of indole acetic acid(IAA) in the human or animal body in comparison to the level of indole acetic acid in the same human or animal body prior to administration of the compound."

From claim 5 "The method as claimed in claim 1, wherein the compound is a precursor of indole acetic acid selected from the group consisting of tryptophan, 4-hydroxytryptophan, 4-methoxytryptophan, 5-hydroxytryptophan, 5-methoxytryptophan, 6hydroxytryptophan, 6-methoxytryptophan, 7-hydroxy-tryptophan, 7methoxytryptophan, hypaphorine, tryptamine, 4-hydroxytryptamine, 4-methoxytryptamine, psilocin (4-hydroxy, dimethyl tryptamine), psilocybin (4-phosphate, dimethyl- tryptamine), baeocystin, serotonin (5hydroxytryptamine), 5-methoxytryptamine, bufotenine (dimethylserotonine),O-methylbufotenine, melatonin, 6hydroxytryptamine, 6-methoxy-tryptamine, 7-hydroxytryptamine, 7methoxytryptamine, indole butyric acid and indole-3-pyruvate."

From claim 6 "The method as claimed in claim 3, wherein the compound is an analogue of the compounds listed in claim 3 or a metabolite of indole acetic acid that can be converted back into a compound as listed in claim 3, and selected from the group consisting of indole, indole-3-acetaldehyde, indole-3ethanol, indole-3-aldehyde, indole-3-methanol, indole-3-carboxylic acid, 3-methylindole

	(skatole); indole-3acetaldoxime, 3-aminomethylindole, N-
	methylaminomethylindole, gramine (N-dimethylaminomethylindole),
	indoxyls (indicans), indoleninones, 3-methylene-2-oxindole, abrine,
	isotan B, isatin, indican, indigo, indurubin, indigotins, 3-indolyl-
	methyl (skatolyl), niacin , 2-oxindole-3-acetic acid, 3-methylene-2-
	oxindole oxindole-3-methanol oxindole-3-aldehyde oxindole-3-
	carboxylic acid and 3-methyloxindole "
	eurooxyne uerd und 5 methyloxindole.
	From claim 14 "The method as claimed in claim 2 wherein the
	composition comprises 1 to 100 mg of the active ingredient "
	composition comprises 1 to 100 mg, of the active ingredient.
4 The method of alaim 1	0 Intl Bat Dee No WO2016001022 "METHODS DEVICES AND
4. The method of claim 1,	5. IIII. Fat. Doc. NO. WO2010001722 WETHODS, DEVICES AND
forther conversions and an	A CENTS? (Dublished Jammers 7, 2016)
Turther comprises one of	AGENTS (Published January 7, 2010)
more extracts of: Bacopa	
monnieri, Centella asiatica,	From claim 1 "A method of pulmonary delivering to a subject at
Gingko biloba, Zingiber	least a first pharmacologically active agent and a second
officinale, Ocimum sanctum,	pharmacologically active agent, at least one of which being in at
Polygonum cuspidatum,	least one plant material, the method comprising independently
Origanum vulgare, Origanum	delivering the agents to the subject using a metered dose inhaler
onites, Rosmarinus	device configured to vaporize at least a first pre-determined vaporized
officinalis, Rosmarinus	amount of said first agent and at least a second pre-determined
eriocalyx, Curcuma longa,	vaporized amount of said second agent upon controllably heating said
Camellia sinensis, Lavandula	at least one plant material, wherein said heating is effected such that
spica, Scutellaria lateriflora,	said first pre-determined vaporized amount is delivered to the subject
Avena sativa, Avena	successively, concomitantly and/or at least partially overlapping with
byzantine, Salvia divinorum,	said second pre-determined vaporized amount, and wherein each of
Banisteriopsis caapi,	said pre-determined vaporized amounts of each of said agents induces
Psychotria species, Tabernan	in the subject independently at least one pharmacokinetic effect and/or
the iboga, Voacanga	at least one pharmacodynamic effect."
africana, Tabernaemontana	
undulate, Lophophora	From claim 51 "The method of any one of claims 1-2 and 26-50,
williamsii, Ipomoea tricolor,	wherein said at least one plant is selected from the group consisting of
Argyreia nervosa, Cannabis	Cannabis sativa, Cannabis indica, Cannabis ruderalis, Acacia spp,
sativa, Cannabis indica,	Amanita muscaria, Yage, Atropa belladonna, Areca catechu,
Cannabis ruderalis, or	Brugmansia spp., Brunfelsia latifolia, Desmanthus illinoensis,
combinations thereof.	Banisteriopsis caapi, Trichocereus spp., Theobroma cacao, Capsicum
	spp., Cestrum spp., Erythroxylum coca, Solenostemon scutellarioides,
	Arundo donax, Coffea arabica, Datura spp., Desfontainia spp.,
	Diplopterys cabrerana, Ephedra sinica, Claviceps purpurea, Paullinia
	cupana, Argyreia nervosa, Hyoscyamus niger, Tabernanthe iboga.
	Lagochilus inebriens, Justicia pectoralis, Sceletium tortuosum. Piper
	methysticum, Catha edulis, Mitragyna speciosa, Leonotis leonurus.
	Nymphaea spp., Nelumbo spp., Sophora secundiflora, Mucuna

pruriens, Mandragora officinarum, Mimosa tenuiflora, Ipomoea violacea, Psilocybe spp., Panaeolus spp., Myristica fragrans, Turbina corymbosa, Passiflora incarnata, Lophophora williamsii, Phalaris spp., Duboisia hopwoodii, Papaver somniferum, Psychotria viridis, spp., Salvia divinorum, Combretum quadrangulare, Trichocereus pachanoi, Heimia salicifolia, Stipa robusta, Solandra spp., Hypericum perforatum, Peganum harmala, Tabernaemontanaspp, Camellia sinensis, Nicotiana tabacum, rusticum, Virola theidora, Voacanga africana, Lactuca virosa, Artemisia absinthium, Ilex paraguariensis, Anadenanthera spp., Corynanthe vohimbe, Calea zacatechichi, Coffea spp. (Rubiaceae), a Sapindaceae, Camellia spp., Malvaceae spp., Aquifoliaceae spp., Hoodia, spp. Chamomilla recutita, Passiflora incarnate, Camellia sinensis, Mentha piperita, Mentha spicata, Rubus idaeus, Eucalyptus globulus, Lavandula officinalis, Thymus vulgaris, Melissa officinalis, Aloe Vera, Angelica, Anise, Ayahuasca (Banisteriopsis caapi), Barberry, Black Horehound, Blue Lotus, Burdock, Camomille/Chamomile, Caraway, Cat's Claw, Clove, Comfrey, Corn Silk, Couch Grass, Damiana, Damiana, Dandelion, Ephedra, Eucalyptus, Evening Primrose, Fennel, Feverfew, Fringe Tree, Garlic, Ginger, Ginkgo, Ginseng, Goldenrod, Goldenseal, Gotu Kola, Green Tea, Guarana, Hawthorn, Hops, Horsetail, Hyssop, Kola Nut, Kratom, Lavender, Lemon Balm, Licorice, Lion's Tail (Wild Dagga), Maca Root, Marshmallow, Meadowsweet, Milk Thistle, Motherwort, Passion Flower, Passionflower, Peppermint, Prickly Poppy, Purslane, Raspberry Leaf, Red Poppy, Sage, Saw Palmetto, Sida Cordifolia, Sinicuichi (Mayan Sun Opener), Spearmint, Sweet Flag, Syrian Rue (Peganum harmala), Thyme, Turmeric, Valerian, Wild Yam, Wormwood, Yarrow, Yerba Mate, Yohimbe, and any part and any combination thereof."

From page 76 line 29 - page 77 line 1 "In some embodiments, the active agent is a terpenoid, alkaloid or cannabinoid. For example, in some embodiments, the active agent is a diterpenoid such as, but not limited to salvinorin A from salvia. In other embodiments, the active agent is an alkaloid such as, but not limited to, benzoylmethylecgonine from the coca plant, or the active agent is a tryptamine such as psylocibin from mushrooms."

From page 23 line 21 - 30 "According to some of any of the embodiments described herein, the personally perceived therapeutic effect corresponds to a symptom, the symptom being selected from the group consisting of pain, migraine, depression, cognitive function deficit, attention deficit, hyperactivity, anxiety disorders, diarrhea, nausea, vomiting, insomnia, delirium, appetite variations, sexual dysfunction, spasticity, increased intra ocular pressure, bladder dysfunction, tics, Tourette symptoms, post traumatic stress disorder (PTSD) symptoms, inflammatory bowel disease (IBD) symptoms, irritable bowel syndrome (IBS) symptoms, hyper tension, hemorrhagic symptoms, septic and cardiogenic shock, drug addiction and craving, withdrawal symptoms, tremors and other movement disorders."

8. CHYCHO, "The Boundary Salvia divinorum, Fasting & Mushrooms - P. cubensis" April 9, 2007; retrieved from Erowid; retrieved from Web Archives.

https://web.archive.org/web/20220916125803/https://www.erowid.org/ experiences/exp.php?ID=53239, retrieved April 9, 2007

DOSE: T+ 0:00	repeated	sublingual	<u>Salvia divinorum</u>	(tea)
T+ 0:00	3.0 g	oral	Mushrooms - P. cubensis	(dried)
T+ 1:30	1 bowl	smoked	Salvia divinorum	(leaves)
BODY WEIGH	T: 180 lb			

From webpage "Brazilian Cubensis: I was able obtain a few grams of a recent crop, harvested and dried within the previous month. I weighed out 2 three-gram batches. Just in case I needed the trip to be more intense I would eat the second batch, but I was only going to initially start with 3 grams. My experience with magic mushrooms rangers from consuming low doses for amplification of daily activities to a maximum dosage of 7 grams for personal journeys

Salvia Divinorum: My Salvia supply comes from Oaxaca, Mexico. My continual exposure to Salvia over the last few years has allowed me to become receptive to the dried leaf, hence no extract was used during this exercise. 42 grams (1.5 ounces) of dried Salvia were used with 10 cups of water to produce 6 cups of concentrated tea. The water was brought to a boil for 20 minutes and then put on simmer for an additional hour and forty minutes, for a total brewing time of 2 hours. Only half a cup was consumed during this journey. In addition, Salvia leaf was rolled into two joints, and a glass water bong was used with one bowl of dried leaf."

5. The method of claim 1,
wherein the dosage form
further comprises one or10. U.S. Pat. App. Pub. No. 2014/0220150 "Integrative Fungal
Solutions For Protecting Bees And Overcoming Colony Collapse

more of: mycelia, fruitbodies, mycelial extracts, or fruitbody extracts of fungi selected from *Antrodia*, *Beauveria*, *Copelandia*, *Cordyceps*, *Ganoderma*, *Grifola*, *Hericium*, *Inonotus*, *Isaria*, *Panaeolus*, *Phellinus*, or combinations thereof. Disorder (CCD): Methods And Compositions" (Published August 7, 2014)

From [0063] "In essence, the inventor has devised a novel nutraceutical which is rich is a wide array of coumarins, phenols and polyphenols; and anti-viral, anti-fungal, anti-bacterial and antiprotozoal agents, and a wide diversity of specialized metabolites such as antioxidants and antimutagens, which are generated as a result of mycelium digesting grains or wood and are attractive to bees and supportive of their host defense against stressors and diseases. The extracts of mushrooms used medicinally for human health have an unexpected benefit for bee health too..."

From [0083] "Useful and preferred fungal genera include, by way of example but not of limitation: the gilled mushrooms (Agaricales) Agaricus, Agrocybe, Armillaria, Clitocybe, Collybia, Conocybe, Coprinus, Coprinopsis, Flammulina, Giganopanus, Gymnopilus, Hypholoma, Inocybe, Hypsizygus, Lentinula, Lentinus, Lenzites, Lepiota, Lepista, Lyophyllum, Macrocybe, Marasmius, Mycena, Omphalotus, Panellus, Panaeolus, Sarcomyxa, Pholiota, Pleurotus, Pluteus, Psathyrella, Psilocybe, Schizophyllum, Stropharia, Termitomyces, Tricholoma, Volvariella, etc.; the polypore mushrooms (Polyporaceae) Albatrellus, Antrodia, Bjerkandera, Bondarzewia, Bridgeoporus, Ceriporia, Coltricia, Coriolus, Daedalea, Dentocorticium, Echinodontium, Fistulina, Flavodon, Fomes, Fomitopsis, Ganoderma, Gloeophyllum, Grifola, Heterobasidion, Inonotus, Irpex, Laetiporus, Meripilus, Oligoporus, Oxyporus, Phaeolus, Phellinus, Piptoporus, Polyporus, Poria, Schizophyllum, Schizopora, Trametes, Wolfiporia; the toothed mushrooms Hericium, Sarcodon, Hydnum, Hydnellum etc.; Basidiomycetes such as Auricularia, Calvatia, Ceriporiopsis, Coniophora, Cyathus, Lycoperdon, Merulius, Phlebia, Serpula, Sparassis and Stereum; Ascomycetes such as Cordyceps, Ophiocordyceps, Morchella, Tuber, Peziza, etc.; 'jelly fungi' such as Tremella; the mycorrhizal mushrooms (including both gilled and polypore mushrooms); fungi such as Phanerochaete (including those such as P. chrysosporium with an imperfect state and P. sordida)."

From [0113] "Filamentous, basidiomycetous fungi are also sources of neuroregenerative compounds. Species of Hericium, (including but not limited to Hericium erinaceus, Hericium corralloides and Hericium abietis) produce potent nerve growth factors causing regeneration of myelin on the axons of nerves and nerve regeneration. (See: http://www.huffingtonpost.com/paul-

	stamets/mushroom-memory b—1725583.html). Psilocybin and
	psilocybin-producing fungi, including but not limited to species of
	Psilocybe, Panaeolus, Gymnopilus, Pluteus and Conocybe such as
	Psilocybe azurescens, Psilocybe cyanescens, Psilocybe allenii,
	Psilocybe cyanofibrillosa, Psilocybe cubensis, Psilocybe
	ovoideocystidiata, Psilocybe subaeruginosa, Copelandian Panaeoli
	(Copelandia cyanescens, Copelandia tropicalis, Copelandia
	bispora). Pluteus salicinus, Gymnopilus luteofolius, Gymnopilus
	spectabilis. Conocybe cyanopus and Conocybe smithii can trigger
	neurogenesis. (See Catlow et al., Effects of psilocybin on
	hippocampal neurogenesis and extinction of trace fear conditioning.
	Exp Brain Res (2013) 228:481-491 DOI 10.1007/s00221-013-3579-0).
	Individually or in combination, mixtures of extracts of psilocybin
	mushroom and Hericium mushroom fruitbodies, or more
	preferably their mycelial extracts, could help repair neurons
	damaged by toxins, cholinergic pesticides, oxidation, old age, or
	other sources of neurotoxins. The net effect of ingesting these
	mixtures of nerve regenerating Hericium and psilocybin species
	would improve the neurological health of bees through
	neurogenesis and re-myelination, and indeed of animals, including
	humans. Another, improved form of "mycological honey" might
	incorporate these elements for the benefits of bees and people,
	improving cognition, preventing or repairing neuropathies presenting
	themselves as diseases to humans within scope of the definitions for
	Alzheimer's, Parkinson's, Parkisonisms, MS (multiple sclerosis), or as
	vet uncategorized forms of neurological impairment. Indeed such
	combinations could increase intelligence, sensory abilities, memory,
	reflexes, reaction times, and problem solving abilities. As such a
	'smart mycological honey' is anticipated to be within the scope of this
	invention."
6 . A method for reducing	1. U.S. Pat. App. Pub. No. 2008/0194553 "Use of Compounds That
symptoms of depression in a	Are Able To Increase The Serum Igf-1 Level For The Preparation Of
subject in need thereof. the	A Therapeutical Composition For Treatment Of Various Disease
method comprising:	States Associated With A Reduced Igf-1 Serum Level In Humans And
administering a dosage form	Animals" (Published August 14, 2008)
comprising: 0.1 to 10 mg of	
baeocystin: and 1 to 50 mg of	From claim 1 "A method, comprising: using one or more
niacin: sufficient to reduce	compounds that are capable of activating the hypothalamus in an
the symptoms of depression	individual to increase the serum level of Growth Hormone Releasing
in the subject.	Hormone (GHRH), which in turn leads to an increase in the secretion
	of growth hormone (GH) and the subsequent rise of the serum level of
	insulin-like growth factor 1 (IGF-1) for the prenaration of a
	therapeutical composition for the treatment of serious fations and
	mer apendent composition for the treatment of serious fullgue und

exhaustion symptoms, burn-out, chronic fatigue syndrome, **depression**, Alzheimer disease, irritated bowel syndrome, osteoporosis, type 2 diabetes, or for anti-aging therapy, immune therapy and for stimulating recovery after physical exercise in humans or for stimulating growth and the immune system in animals."

From claim 2 "The method as claimed in claim 1, wherein the compound is a compound that, when administered to a human or animal individual to be treated, leads to an increased level of indole acetic acid(IAA) in the human or animal body in comparison to the level of indole acetic acid in the same human or animal body prior to administration of the compound."

From claim 5 "The method as claimed in claim 1, wherein the compound is a precursor of indole acetic acid selected from the group consisting of tryptophan, 4-hydroxytryptophan, 4-methoxytryptophan, 5-hydroxytryptophan, 5-methoxytryptophan, 6hydroxytryptophan, 6-methoxytryptophan, 7-hydroxy-tryptophan, 7methoxytryptophan, hypaphorine, tryptamine, 4-hydroxytryptamine, 4-methoxytryptamine, psilocin (4-hydroxy, dimethyl tryptamine), psilocybin (4-phosphate, dimethyl- tryptamine), baeocystin, serotonin (5hydroxytryptamine), 5-methoxytryptamine, bufotenine (dimethylserotonine),O-methylbufotenine, melatonin, 6hydroxytryptamine, 6-methoxy-tryptamine, 7-hydroxytryptamine, 7methoxytryptamine, indole butyric acid and indole-3-pyruvate."

From claim 6 "The method as claimed in claim 3, wherein the compound is an analogue of the compounds listed in claim 3 or a metabolite of indole acetic acid that can be converted back into a compound as listed in claim 3, and selected from the group consisting of indole, indole-3-acetaldehyde, indole-3ethanol, indole-3-aldehyde, indole-3-methanol, indole-3-carboxylic acid, 3-methylindole (skatole); indole-3acetaldoxime, 3-aminomethylindole, N-methylaminomethylindole, gramine (N-dimethylaminomethylindole), indoxyls (indicans), indoleninones, 3-methylene-2-oxindole, abrine, isotan B, isatin, indican, indigo, indurubin, indigotins, 3-indolyl-methyl (skatolyl), niacin, 2-oxindole-3-acetic acid, 3-methylene-2-oxindole, oxindole-3-methanol, oxindole-3-aldehyde, oxindole-3-carboxylic acid and 3-methyloxindole."

From claim 14 "The method as claimed in claim 2, wherein the composition comprises 1 to 100 mg, of the active ingredient."

3. WIECZOREK (2015) "Chapter 5 - Bioactive Alkaloids of Hallucinogenic Mushrooms" Studies in Natural Products Chemistry.
46: 133-168

From page 134 "In nature, indoles are probably the most often occurring heterocyclic compounds, having medicinal importance [3]. Two simple indole alkaloids: psilocin (3-[2 (dimethylamino) ethyl]-4-indolol) and psilocybin ([3-(2-dimethylaminoethyl)-1H-indol-4-yl] dihydrogen phosphate) are present in many mushroom species. **These mushrooms are called hallucinogenic, psychedelic, entheogenic, magic, medicinal, neurotropic, psychoactive, sacred, or saint mushrooms** [4]. Also other analogs of psilocybin, known as **baeocystin,** norbaeocystin, bufotenin, and aeruginascin, were found in hallucinogenic mushrooms. Hallucinogenic compounds were chemically identified in mushrooms belonging to **various genera**, e.g., Agrocybe, Conocybe, Galerina, Gymnopilus, Hypholoma, Inocybe, Panaeolus, **Psilocybe**, Pholiotina, Pluteus, and Weraroa [5]."

2. PSILOLOVER333, "Virgin Beauty Blossoming Consciousness Mushrooms - P. cubensis" January 13, 2016; retrieved from Erowid Experience Vaults.

https://erowid.org/experiences/exp.php?ID=107678, retrieved January 13, 2016

DOSE:	2 g		oral	Mushrooms - P. cubensis
	BODY WEIGHT:	135 lb		
Psilocybin as Med	licine			

From webpage "At fourteen years old I was diagnosed with major depressive disorder, generalized anxiety, and Hashimoto's Disease... After being let down by modernized medicine I decided to teach myself about what was wrong with my body and my mind. I found many stories about psilocybin and LSD being used to treat/cure depression and anxiety... I was sitting alone in the next room when one of my sister's friends walked in with an ounce of potent psilocybe cubensis. I eagerly offered him some money in exchange for 2 grams of his fungi and he was pleased to oblige... Then, comforter to sheets, sheets to skin, skin to psilocybin energy, psilocybin energy to brain, brain to depression-killing lessons. I was shown how ignorant I had been... Psilocybin will change the world if only we as a society decide to harness it with graciousness. The strength that it holds in curing us of our ego driven world is profound! All we must do is recognize the

virgin beauty that is consciousness."	our world and ac	cept it by blo	ssoming our
4. CARTZ (1994) "I fungal biomass" Jou	Extraction and an urnal of Basic Mic	alysis of indo crobiology. 34	le derivatives from 4(1): 17-22
From page 18 "Extr mushrooms were e	action: Samples xtracted with 5 ((0.01 -0.1 g) to 20 ml of m	of dried ground ethanol for 0.5 to
12 hours by using a equal conditions the 1985) and aqueous e (KYSILKA and WU extraction of the sam	a magnetic stirre mixtures with aq ethanol (psilocin) JRST 1990. WUF ne batch of mush	er at room ten jueous acetic a and methano RST <i>et al.</i> 199 rooms."	mperature. Under acid (CASALE l (psilocybin) 2) were used for
From page 19 "In the psilocybin and baeo after 30 min in all sp and G. purpuratus. He mushrooms was read- indole derivatives con- fungal material with acid as well as with incompletely meth	his investigation to cever with pure pecies and even 6 But the full extract ched after 12 hou build be detected a aqueous solution chloroform for per- valated counterpart	he extraction methanol was hours in anal tion of the alk rs. After this after subseque the of ethanol/r silocin. Baeocount and possil	of psilocin, s not completely ysis of P. cubensis caloids from all time no traces of ent extraction of the methanol or acetic cystin as
psilocybin (GARTZ methanol but in so	Z 1989a) was fou me cases only in	ind in all spe very small a	cies by using mounts (Table 1)."
Table 1 Amount of indole alkaloids	in fruiting bodies of diffe	erent species by usin	g pure methanol as solvent
Species	Psilocybin	Psilocin	Baeocystin
	(%, dry weight)	
P. semilanceata	0.98	_	0.34
P. bohemica	0.85	0.02	0.04
P cubensis	0.95	0.04	0.02
G. purpuratus	0.34	0.29	0.05
I. aeruginascens	0.40		0.21
P. cyanescens	0.32	0.51	0.02

5. MATTILA (2001) "Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms" Journal of Agricultural and Food Chemistry. 49(5): 2343-2348

From abstract "The aim of the study was to determine the contents of mineral elements (Ca, K, Mg, Na, P, Cu, Fe, Mn, Cd, Pb, and Se), vitamins (B1, B2, B12, C, D, folates, and niacin), and certain phenolic compounds (flavonoids, lignans, and phenolic acids) **in the cultivated mushrooms** Agaricus bisporus/white, Agaricus bisporus/brown, Lentinus edodes, and Pleurotus ostreatus. Selenium, toxic heavy metals (Cd, Pb), and other mineral elements were analyzed by ETAAS, ICP-MS, and ICP methods, respectively; vitamins were detected by microbiological methods (folates, niacin, and vitamin B12) or HPLC methods (other vitamins), and phenolic compounds were analyzed by HPLC (flavonoids) or GC-MS methods (lignans and phenolic acids)."

From page 2344 "Vitamins. Cultivated mushrooms were good sources of several vitamins (Table 1), particularly riboflavin, niacin, and folates."

From page 2345

Table 1. Vitamin Contents of Analyzed Cultivated Mushrooms (mg or μ g/100 g)^a

				mushroom				
vitamin	Agaricus bisporus/white		Agaricus bisporus/brown		Lentinus edodes		Pleurotus ostreatus	
	fw	dw	fw	dw	fw	dw	fw	dw
vitamin C, mg	1.3	17	1.6	21	2.1	25	1.6	20
vitamin B1, mg	0.05	0.6	0.05	0.6	0.05	0.6	0.07	0.9
vitamin B ₂ , mg	0.39	5.1	0.33	4.2	0.15	1.8	0.20	2.5
folates ug	35	450	46	590	25	300	51	640
niacin, mg	3.3	43	4.1	53	2.6	31	5.2	65
vitamin B ₁₂ , µg	0.06	0.8	0.05	0.6	0.07	0.8	0.05	0.6
vitamin D, μ g	< 0.02		< 0.02		0.1	1	0.02	0.3
dry matter, %	7.7		7.8		8.4		8.0	

6. EROWID, "Psilocybin, Psilocin, and Magic Mushroom Dosage" January 18, 2013; retrieved from Erowid; retrieved from Web Archives.

https://web.archive.org/web/20130118160500/https:/erowid.org/plants /mushrooms/mushrooms_dose.shtml

From website "Psilocybe cubensis is a medium strength psilocybian mushroom consisting of approximately .63% psilocybin and .60% psilocin in dried wild mushrooms. Indoor cultivated mushrooms tend to have higher concentrations. Note that potency of mushrooms can vary greatly from one batch to the next. The following chart shows approximate oral dosages for (dried) Psilocybe cubensis in grams."

Oral P. cubensis Dosages		
Threshold	.25 g	1/100 oz
Light	.25 - 1 g	1/100 - 1/28oz
Common	1 - 2.5 g	1/28 - 1/10oz
Strong	2.5 - 5 g	1/10 - 1/6oz
Heavy	5 + g	1/6oz +

7. The method of claim 6, wherein the dosage form further comprises 0.1 to 10	4. CARTZ (1994) "Ex fungal biomass" Journ	traction and an al of Basic Mic	alysis of indo crobiology. 34	le derivatives from (1): 17-22
mg of <i>psilocybin, psilocin</i> ,	From page 18 "Extrac mushrooms were ext	ction: Samples	(0.01 -0.1 g) o to 20 ml of m	of dried ground ethanol for 0.5 to
thereaf	12 hours by using on	nacicu with 5 (w at years tax	monotuno Undor
mereoi.	12 nours by using a r	nagnetic surre	er at room ten	inperature. Under
	equal conditions the n	nixtures with ac	lueous acetic a	icid (CASALE
	1985) and aqueous eth	nanol (psilocin)	and methanol	(psilocybin)
	(KYSILKA and WUR	RST 1990. WUI	RST <i>et al</i> . 199	2) were used for
	extraction of the same	batch of mush	rooms."	
	From page 19 "In this	s investigation t	he extraction	of psilocin,
	psilocybin and baeocy	ystin with pure	methanol was	not completely
	after 30 min in all spe	cies and even 6	hours in analy	ysis of P. cubensis
	and G. purpuratus. Bu	t the full extrac	tion of the alk	aloids from all
	mushrooms was reach	ed after 12 hou	rs After this t	ime no traces of
	indole derivatives cou	ld be detected a	after subseque	nt extraction of the
	fungal material with a	queous solution	s of athanal/n	nethanal or agatia
		queous solution		
	acid as well as with cr	noroiorm for p	silocin. Baeoc	ystin as
	incompletely methyla	ated counterpa	irt and possib	ole precursor of
	psilocybin (GARTZ	1989a) was fou	ind in all spec	cies by using
	methanol but in som	e cases only in	very small an	nounts (Table 1)."
	Table 1			
	Amount of indole alkaloids in	fruiting bodies of diffe	erent species by usin	g pure methanol as solvent
	Species	Psilocybin	Psilocin	Baeocystin
		(%, dry weight)	
	P. semilanceata P. hohemica	0.98		0.34
	P. bohemica (cultivated)	0.83	0.02	0.02
	P. cubensis G. purpuratus	0.63	0.11	0.02
	I. aeruginascens	0.40	-	0.21
	P. cyanescens	0.32	0.51	0.02
	6. EROWID, "Psilocy	bin, Psilocin, a	nd Magic Mu	shroom Dosage"
	January 18, 2013; retrieved from Erowid; retrieved from Web			
	Archives.			
	https://web.archive.org/web/20130118160500/https:/erowid.org/plants			
	/mushrooms/mushrooms_dose_shtml			
	From website "Psilocybe cubensis is a medium strength psilocybian			
	mushroom consisting of approximately .63% psilocybin and .60%			
	psilocin in dried wild mushrooms. Indoor cultivated mushrooms			
	tend to have higher concentrations. Note that notency of mushrooms			
	tend to have higher co	ncentrations N	ote that noten	cy of mushrooms

Г

	shows approximate oral dosages for (dried) Psilocybe cubensis in		
	grams."		
	8		
	Oral P. cubensis Dosages		
	Threshold 25 g 1/100 oz		
	Light 25 - 1 g 1/100 - 1/28oz		
	Common 1 - 2.5 g 1/28 - 1/10oz		
	Strong 2.5 - 5 g 1/10 - 1/6oz		
	Heavy 5+g 1/6oz +		
8. The method of claim 6,	1. U.S. Pat. App. Pub. No. 2008/0194553 "Use of Compounds That		
wherein the dosage form	Are Able To Increase The Serum Igt-I Level For The Preparation Of		
further comprises one or	A Therapeutical Composition For Treatment Of Various Disease		
more pharmaceutically	States Associated With A Reduced Igt-I Serum Level In Humans And		
acceptable excipients	Animals" (Published August 14, 2008)		
comprising selected from			
buffering agents,	From [0032] "The composition of the invention is preferably in the		
antimicrobial preservatives,	form of a capsule , but other dosage forms, preferably oral dosage		
antioxidants, suspension	forms, such as tablets , oral suspensions, oral emulsions, oral fluids,		
agents, a tablet or capsule	powders, lozenges, pastilles, pills, etc., are also possible. The		
diluent, or a tablet	composition may for example take the form of a food supplement or a		
disintegrant.	pharmaceutical composition."		
	From claim 17 "Theraneutical composition comprising a suitable		
	diluent, carrier or excinient and one or more compounds as listed in		
	claim 3 "		
	From claim 1 "A method, comprising: using one or more		
	compounds that are capable of activating the hypothalamus in an		
	individual to increase the serum level of Growth Hormone Releasing		
	Hormone (GHRH), which in turn leads to an increase in the secretion		
	of growth hormone (GH) and the subsequent rise of the serum level of		
	insulin-like growth factor 1 (IGF-1) for the preparation of a		
	therapeutical composition for the treatment of serious fatigue and		
	exhaustion symptoms, burn-out, chronic fatigue syndrome,		
	depression, Alzheimer disease, irritated bowel syndrome,		
	osteoporosis, type 2 diabetes, or for anti-aging therapy, immune		
	therapy and for stimulating recovery after physical exercise in humans		
	or for stimulating growth and the immune system in animals."		
	From claim 2 "The method as claimed in claim 1, wherein the		
	compound is a compound that when administered to a human or		
	animal individual to be treated leads to an increased level of indele		
	annual mutvitudal to be treated, reads to an increased level of indole		

	acetic acid(IAA) in the human or animal body in comparison to the
	level of indole acetic acid in the same human or animal body prior to
	administration of the compound."
	From claim 5 "The method as claimed in claim 1, wherein the
	compound is a precursor of indole acetic acid selected from the group
	consisting of tryptophan, 4-hydroxytryptophan, 4-methoxy-
	tryptophan, 5-hydroxytryptophan, 5-methoxytryptophan, 6-
	hydroxytryntonhan 6-methoxytryntonhan 7-hydroxy-tryntonhan 7-
	methoxytryptophan, o methoxytryptophan, r hydroxy tryptophan, r
	4-methoxytryptamine, psilocin (4-hydroxy, dimethyl tryptamine)
	nsilocyhin (4-nhosnhate, dimethyl- tryntamine) haeocystin serotonin
	(5hydroxytryntamine) 5 methoxytryntamine hyfotenine
	(dimethylescotoning) O methylkyfotoning, maletonin, 6
	hydroxytructoning, 6 methovy tructoning, 7 hydroxytructoning, 7
	nydroxytryptamine, o-methoxy-tryptamine, /-nydroxytryptamine, /-
	methoxytryptamine, indole butyric acid and indole-3-pyruvate.
	From claim 6 "The method as claimed in claim 3, wherein the
	compound is an analogue of the compounds listed in claim 3 or a
	metabolite of indole agetic agid that can be converted back into a
	accompanyed as listed in aloim 2, and salested from the group
	compound as listed in claim 5, and selected from the group
	consisting of indole, indole-5-activatelyde, indole-5-thanoi, indole-5-
	aldenyde, indol-5-metnanol, indole-5-carboxylic acid, 5-metnylindole
	(skatole); indole-sacetaldoxime, s-aminomethylindole, N-
	methylaminomethylindole, gramine (N-dimethylaminomethylindole),
	indoxyls (indicans), indoleninones, 3-methylene-2-oxindole, abrine,
	isotan B, isatin, indican, indigo, indurubin, indigotins, 3-indolyl-
	methyl (skatolyl), niacin, 2-oxindole-3-acetic acid, 3-methylene-2-
	oxindole, oxindole-3-methanol, oxindole-3-aldehyde, oxindole-3-
	carboxylic acid and 3-methyloxindole."
	From claim 14 "The method as claimed in claim 2, wherein the
	composition comprises 1 to 100 mg, of the active ingredient."
0 The method of along (0 Ltd Det Dee No. WO201(001022 "METHODS DEVICES AND
9. The method of claim 6,	9. IIII. Pat. Doc. NO. WO2010001922 METHODS, DEVICES AND
Gently wherein the dosage form	A CENTS? (Dell'ele L'Accesse 7, 2016)
nurther comprises one or	AGEN15 (Published January /, 2016)
monutaria Contalla anistica	From aloin 1 "A method of nulmonous delivering to a subject of
Cingko biloha Zingihar	From claim 1 A method of pumonary derivering to a subject at
officingle Ocimum constant	icast a mist pharmacologically active agent and a second
Deboonum augridatum	phai macologically active agent, at least one of which being in at
Polygonum cuspiaatum,	delivering the agents to the sphilast using a material data inhology
Origanum vulgare, Origanum	derivering the agents to the subject using a metered dose inhaler
onites, Rosmarinus	device configured to vaporize at least a first pre-determined vaporized

officinalis, Rosmarinus eriocalyx, Curcuma longa, Camellia sinensis, Lavandula spica, Scutellaria lateriflora, Avena sativa, Avena byzantine, Salvia divinorum, Banisteriopsis caapi, Psychotria species, Tabernan the iboga, Voacanga africana, Tabernaemontana undulate, Lophophora williamsii, Ipomoea tricolor, Argyreia nervosa, Cannabis sativa, Cannabis indica, *Cannabis ruderalis*, or combinations thereof.

amount of said first agent and at least a second pre-determined vaporized amount of said second agent upon controllably heating said at least one plant material, wherein said heating is effected such that said first pre-determined vaporized amount is delivered to the subject successively, concomitantly and/or at least partially overlapping with said second pre-determined vaporized amount, and wherein each of said pre-determined vaporized amounts of each of said agents induces in the subject independently at least one pharmacokinetic effect and/or at least one pharmacodynamic effect."

From claim 51 "The method of any one of claims 1-2 and 26-50, wherein said at least one plant is selected from the group consisting of Cannabis sativa, Cannabis indica, Cannabis ruderalis, Acacia spp, Amanita muscaria, Yage, Atropa belladonna, Areca catechu, Brugmansia spp., Brunfelsia latifolia, Desmanthus illinoensis, Banisteriopsis caapi, Trichocereus spp., Theobroma cacao, Capsicum spp., Cestrum spp., Erythroxylum coca, Solenostemon scutellarioides, Arundo donax, Coffea arabica, Datura spp., Desfontainia spp., Diplopterys cabrerana, Ephedra sinica, Claviceps purpurea, Paullinia cupana, Argyreia nervosa, Hyoscyamus niger, Tabernanthe iboga, Lagochilus inebriens, Justicia pectoralis, Sceletium tortuosum, Piper methysticum, Catha edulis, Mitragyna speciosa, Leonotis leonurus, Nymphaea spp., Nelumbo spp., Sophora secundiflora, Mucuna pruriens, Mandragora officinarum, Mimosa tenuiflora, Ipomoea violacea, Psilocybe spp., Panaeolus spp., Myristica fragrans, Turbina corymbosa, Passiflora incarnata, Lophophora williamsii, Phalaris spp., Duboisia hopwoodii, Papaver somniferum, Psychotria viridis, spp., Salvia divinorum, Combretum quadrangulare, Trichocereus pachanoi, Heimia salicifolia, Stipa robusta, Solandra spp., Hypericum perforatum, Peganum harmala, Tabernaemontanaspp, Camellia sinensis, Nicotiana tabacum, rusticum, Virola theidora, Voacanga africana, Lactuca virosa, Artemisia absinthium, Ilex paraguariensis, Anadenanthera spp., Corynanthe yohimbe, Calea zacatechichi, Coffea spp. (Rubiaceae), a Sapindaceae, Camellia spp., Malvaceae spp., Aquifoliaceae spp., Hoodia, spp. Chamomilla recutita, Passiflora incarnate, Camellia sinensis, Mentha piperita, Mentha spicata, Rubus idaeus, Eucalyptus globulus, Lavandula officinalis, Thymus vulgaris, Melissa officinalis, Aloe Vera, Angelica, Anise, Ayahuasca (Banisteriopsis caapi), Barberry, Black Horehound, Blue Lotus, Burdock, Camomille/Chamomile, Caraway, Cat's Claw, Clove, Comfrey, Corn Silk, Couch Grass, Damiana, Damiana, Dandelion, Ephedra, Eucalyptus, Evening Primrose, Fennel, Feverfew, Fringe Tree, Garlic, Ginger, Ginkgo, Ginseng, Goldenrod, Goldenseal, Gotu Kola, Green Tea, Guarana, Hawthorn, Hops, Horsetail, Hyssop, Kola

Nut, Kratom, Lavender, Lemon Balm, Licorice, Lion's Tail (Wild Dagga), Maca Root, Marshmallow, Meadowsweet, Milk Thistle, Motherwort, Passion Flower, Passionflower, Peppermint, Prickly Poppy, Purslane, Raspberry Leaf, Red Poppy, Sage, Saw Palmetto, Sida Cordifolia, Sinicuichi (Mayan Sun Opener), Spearmint, Sweet Flag, Syrian Rue (Peganum harmala), Thyme, Turmeric, Valerian, Wild Yam, Wormwood, Yarrow, Yerba Mate, Yohimbe, and any part and any combination thereof."

From page 76 line 29 - page 77 line 1 "In some embodiments, the active agent is a terpenoid, alkaloid or cannabinoid. For example, in some embodiments, the active agent is a diterpenoid such as, but not limited to salvinorin A from salvia. In other embodiments, the active agent is an alkaloid such as, but not limited to, benzoylmethylecgonine from the coca plant, or the active agent is a tryptamine such as psylocibin from mushrooms."

From page 23 line 21 - 30 "According to some of any of the embodiments described herein, the personally perceived therapeutic effect corresponds to a symptom, the symptom being selected from the group consisting of pain, migraine, depression, cognitive function deficit, attention deficit, hyperactivity, anxiety disorders, diarrhea, nausea, vomiting, insomnia, delirium, appetite variations, sexual dysfunction, spasticity, increased intra ocular pressure, bladder dysfunction, tics, Tourette symptoms, post traumatic stress disorder (PTSD) symptoms, inflammatory bowel disease (IBD) symptoms, irritable bowel syndrome (IBS) symptoms, hyper tension, hemorrhagic symptoms, septic and cardiogenic shock, drug addiction and craving, withdrawal symptoms, tremors and other movement disorders."

8. CHYCHO, "The Boundary Salvia divinorum, Fasting & Mushrooms - P. cubensis" April 9, 2007; retrieved from Erowid; retrieved from Web Archives.

https://web.archive.org/web/20220916125803/https:/www.erowid.org/ experiences/exp.php?ID=53239, retrieved April 9, 2007

DOSE: T+ 0:00	repeated	sublingual	<u>Salvia divinorum</u>	(tea)
T+ 0:00	3.0 g	oral	Mushrooms - P. cubensis	(dried)
T+ 1:30	1 bowl	smoked	Salvia divinorum	(leaves)
BODY WEIGH	T: 180 lb			

	From webpage "Brazilian Cubensis: I was able obtain a few grams of a recent crop, harvested and dried within the previous month. I weighed out 2 three-gram batches. Just in case I needed the trip to be more intense I would eat the second batch, but I was only going to initially start with 3 grams. My experience with magic mushrooms rangers from consuming low doses for amplification of daily activities to a maximum dosage of 7 grams for personal journeys
	Salvia Divinorum: My Salvia supply comes from Oaxaca, Mexico. My continual exposure to Salvia over the last few years has allowed me to become receptive to the dried leaf, hence no extract was used during this exercise. 42 grams (1.5 ounces) of dried Salvia were used with 10 cups of water to produce 6 cups of concentrated tea. The water was brought to a boil for 20 minutes and then put on simmer for an additional hour and forty minutes, for a total brewing time of 2 hours. Only half a cup was consumed during this journey. In addition, Salvia leaf was rolled into two joints, and a glass water bong was used with one bowl of dried leaf."
10 . The method of claim 6, wherein the dosage form further comprises one or more of: mycelia, fruitbodies, mycelial extracts, or	 10. U.S. Pat. App. Pub. No. 2014/0220150 "Integrative Fungal Solutions For Protecting Bees And Overcoming Colony Collapse Disorder (CCD): Methods And Compositions" (Published August 7, 2014)
fruitbody extracts, or fruitbody extracts of fungi selected from Antrodia, Beauveria, Copelandia, Cordyceps, Ganoderma, Grifola, Hericium, Inonotus, Isaria, Panaeolus, Phellinus, or combinations thereof.	From [0063] "In essence, the inventor has devised a novel nutraceutical which is rich is a wide array of coumarins, phenols and polyphenols; and anti-viral, anti-fungal, anti-bacterial and anti- protozoal agents, and a wide diversity of specialized metabolites such as antioxidants and antimutagens, which are generated as a result of mycelium digesting grains or wood and are attractive to bees and supportive of their host defense against stressors and diseases. The extracts of mushrooms used medicinally for human health have an unexpected benefit for bee health too"
	From [0083] "Useful and preferred fungal genera include, by way of example but not of limitation: the gilled mushrooms (Agaricales) Agaricus, Agrocybe, Armillaria, Clitocybe, Collybia, Conocybe, Coprinus, Coprinopsis, Flammulina, Giganopanus, Gymnopilus, Hypholoma, Inocybe, Hypsizygus, Lentinula, Lentinus, Lenzites, Lepiota, Lepista, Lyophyllum, Macrocybe, Marasmius, Mycena, Omphalotus, Panellus, Panaeolus, Sarcomyxa, Pholiota, Pleurotus, Pluteus, Psathyrella, Psilocybe , Schizophyllum, Stropharia, Termitomyces, Tricholoma, Volvariella, etc.; the polypore mushrooms

(Polyporaceae) Albatrellus, Antrodia, Bjerkandera, Bondarzewia, Bridgeoporus, Ceriporia, Coltricia, Coriolus, Daedalea, Dentocorticium, Echinodontium, Fistulina, Flavodon, Fomes, Fomitopsis, Ganoderma, Gloeophyllum, Grifola, Heterobasidion, Inonotus, Irpex, Laetiporus, Meripilus, Oligoporus, Oxyporus, Phaeolus, Phellinus, Piptoporus, Polyporus, Poria, Schizophyllum, Schizopora, Trametes, Wolfiporia; the toothed mushrooms Hericium, Sarcodon, Hydnum, Hydnellum etc.; Basidiomycetes such as Auricularia, Calvatia, Ceriporiopsis, Coniophora, Cyathus, Lycoperdon, Merulius, Phlebia, Serpula, Sparassis and Stereum; Ascomycetes such as Cordyceps, Ophiocordyceps, Morchella, Tuber, Peziza, etc.; 'jelly fungi' such as Tremella; the mycorrhizal mushrooms (including both gilled and polypore mushrooms); fungi such as Phanerochaete (including those such as P. chrysosporium with an imperfect state and P. sordida)."

From [0113] "Filamentous, basidiomycetous fungi are also sources of neuroregenerative compounds. Species of Hericium, (including but not limited to Hericium erinaceus, Hericium corralloides and Hericium abietis) produce potent nerve growth factors causing regeneration of myelin on the axons of nerves and nerve regeneration. (See: http://www.huffingtonpost.com/paulstamets/mushroom-memory b-1725583.html). Psilocybin and psilocybin-producing fungi, including but not limited to species of Psilocybe, Panaeolus, Gymnopilus, Pluteus and Conocybe such as Psilocybe azurescens, Psilocybe cyanescens, Psilocybe allenii, Psilocybe cyanofibrillosa, Psilocybe cubensis, Psilocybe ovoideocystidiata, Psilocybe subaeruginosa, Copelandian Panaeoli (Copelandia cyanescens, Copelandia tropicalis, Copelandia bispora), Pluteus salicinus, Gymnopilus luteofolius, Gymnopilus spectabilis, Conocybe cyanopus and Conocybe smithii can trigger neurogenesis. (See Catlow et al., Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning, Exp Brain Res (2013) 228:481-491 DOI 10.1007/s00221-013-3579-0). Individually or in combination, mixtures of extracts of psilocybin mushroom and Hericium mushroom fruitbodies, or more preferably their mycelial extracts, could help repair neurons damaged by toxins, cholinergic pesticides, oxidation, old age, or other sources of neurotoxins. The net effect of ingesting these mixtures of nerve regenerating Hericium and psilocybin species would improve the neurological health of bees through neurogenesis and re-myelination, and indeed of animals, including humans. Another, improved form of "mycological honey" might incorporate these elements for the benefits of bees and people,

	improving cognition, preventing or repairing neuropathies presenting themselves as diseases to humans within scope of the definitions for Alzheimer's, Parkinson's, Parkisonisms, MS (multiple sclerosis), or as yet uncategorized forms of neurological impairment . Indeed such combinations could increase intelligence, sensory abilities, memory, reflexes, reaction times, and problem solving abilities. As such a 'smart mycological honey' is anticipated to be within the scope of this invention."
11 . A method for reducing symptoms of depression in a subject in need thereof, the method comprising:	 3. WIECZOREK (2015) "Chapter 5 - Bioactive Alkaloids of Hallucinogenic Mushrooms" Studies in Natural Products Chemistry. 46: 133-168
administering a dosage form comprising: 0.1 to 10 mg of norbaeocystin; and 1 to 50 mg of niacin; sufficient to reduce the symptoms of depression in the subject.	From page 134 "In nature, indoles are probably the most often occurring heterocyclic compounds, having medicinal importance [3]. Two simple indole alkaloids: psilocin (3-[2 (dimethylamino) ethyl]-4-indolol) and psilocybin ([3-(2-dimethylaminoethyl)-1H-indol- 4-yl] dihydrogen phosphate) are present in many mushroom species. These mushrooms are called hallucinogenic, psychedelic, entheogenic, magic, medicinal, neurotropic, psychoactive, sacred, or saint mushrooms [4]. Also other analogs of psilocybin, known as baeocystin, norbaeocystin, bufotenin, and aeruginascin, were found in hallucinogenic mushrooms. Hallucinogenic compounds were chemically identified in mushrooms belonging to various genera, e.g., Agrocybe, Conocybe, Galerina, Gymnopilus, Hypholoma, Inocybe, Panaeolus, Psilocybe, Pholiotina, Pluteus, and Weraroa [5]."
	2. PSILOLOVER333, "Virgin Beauty Blossoming Consciousness Mushrooms - P. cubensis" January 13, 2016; retrieved from Erowid Experience Vaults. <u>https://erowid.org/experiences/exp.php?ID=107678</u> , retrieved January 13, 2016 DOSE: 2 g oral Mushrooms - P. cubensis BODY WEIGHT: 135 lb Psilocybin as Medicine
	From webpage "At fourteen years old I was diagnosed with major depressive disorder, generalized anxiety, and Hashimoto's Disease After being let down by modernized medicine I decided to teach myself about what was wrong with my body and my mind. I found many stories about psilocybin and LSD being used to treat/cure depression and anxiety I was sitting alone in the next room when

one of my sister's friends walked in with an ounce of **potent psilocybe cubensis**. I eagerly offered him some money in exchange for **2 grams of his fungi** and he was pleased to oblige... Then, comforter to sheets, sheets to skin, skin to psilocybin energy, psilocybin energy to brain, brain to **depression-killing lessons**. I was shown how ignorant I had been... Psilocybin will change the world if only we as a society decide to harness it with graciousness. The strength that it holds in curing us of our ego driven world is profound! All we must do is recognize the virgin beauty that is our world and accept it by blossoming our consciousness."

5. MATTILA (2001) "Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms" Journal of Agricultural and Food Chemistry. 49(5): 2343-2348

From abstract "The aim of the study was to determine the contents of mineral elements (Ca, K, Mg, Na, P, Cu, Fe, Mn, Cd, Pb, and Se), vitamins (B1, B2, B12, C, D, folates, and niacin), and certain phenolic compounds (flavonoids, lignans, and phenolic acids) in the cultivated mushrooms Agaricus bisporus/white, Agaricus bisporus/brown, Lentinus edodes, and Pleurotus ostreatus. Selenium, toxic heavy metals (Cd, Pb), and other mineral elements were analyzed by ETAAS, ICP-MS, and ICP methods, respectively; vitamins were detected by microbiological methods (folates, niacin, and vitamin B12) or HPLC methods (other vitamins), and phenolic compounds were analyzed by HPLC (flavonoids) or GC-MS methods (lignans and phenolic acids)."

From page 2344 "Vitamins. Cultivated mushrooms were good sources of several vitamins (Table 1), particularly riboflavin, niacin, and folates."

From page 2345 Table 1. Vitamin Contents of Analyzed Cultivated Mushrooms (mg or μ g/100 g)² mushroo Agaricus bisporus/white Agaricus bisporus/brown Lentinus edodes Pleurotus ostreatus vitamin fw dw fw dw fw dw fw dw vitamin C, mg vitamin B₁, mg vitamin B₂, mg 17 0.6 5.1 2.1 0.05 0.15 25 0.6 1.8 1.3 0.05 0.39 1.6 0.05 0.33 21 0.6 1.6 0.07 0.20 20 0.9 4.2 2.5 olates ug 590 53 3.3 4.1 2.6 niacin, mg 43 31 65 0.8 0.00 0.07 vitamin D, µg dry matter, % < 0.02 <0.02 7.8 0.1 8.4 1 0.02 0.3 ^a fw, fresh weight; dw, dry weight. 6. EROWID, "Psilocybin, Psilocin, and Magic Mushroom Dosage"

January 18, 2013; retrieved from Erowid; retrieved from Web

	1
	Archives.
	https://web.archive.org/web/20130118160500/https:/erowid.org/plants/
	/mushrooms/mushrooms_dose.shum, retrieved January 18, 2015
	From website "Psilocybe cubensis is a medium strength psilocybian
	mushroom consisting of approximately .63% psilocybin and .60%
	psilocin in dried wild mushrooms . Indoor cultivated mushrooms
	tend to have higher concentrations. Note that potency of mushrooms
	can vary greatly from one batch to the next. The following chart
	shows approximate oral dosages for (dried) Psilocybe cubensis in
	grams."
	Oral P. cubensis Dosages
	Threshold .25 g 1/100 oz
	Light .25 - 1 g 1/100 - 1/28oz
	Common 1 - 2.5 g 1/28 - 1/10oz
	Strong 2.5 - 5 g 1/10 - 1/6oz
	Heavy 5+g 1/60z+
12 . The method of claim 11,	3. WIECZOREK (2015) "Chapter 5 - Bioactive Alkaloids of
wherein the dosage form	Hallucinogenic Mushrooms" Studies in Natural Products Chemistry.
further comprises 0.1 to 10	46: 133-168
mg of <i>psilocybin</i> , <i>psilocin</i> ,	From page 124 "In nature indoles are probably the most often
thereof	occurring heterocyclic compounds having medicinal importance
	[3] Two simple indole alkaloids: psilocin (3-12 (dimethylamino)
	ethyl]-4-indolol) and psilocybin ([3-(2-dimethylaminoethyl)-1H-
	indol-4-yl] dihydrogen phosphate) are present in many mushroom
	species. These mushrooms are called hallucinogenic, psychedelic,
	entheogenic, magic, medicinal, neurotropic, psychoactive, sacred,
	or saint mushrooms [4]. Also other analogs of psilocybin, known as
	baeocystin, norbaeocystin, bufotenin, and aeruginascin, were found in
	hallucinogenic mushrooms. Hallucinogenic compounds were
	chemically identified in mushrooms belonging to various genera, e.g.,
	Agrocybe, Conocybe, Galerina, Gymnopilus, Hypholoma, Inocybe,
	ranaeoius, rsilocyde , Pholiotina, Pluteus, and Weraroa [5]."
	6. EROWID, "Psilocybin, Psilocin, and Magic Mushroom Dosage"
	January 18, 2013; retrieved from Erowid; retrieved from Web
	Archives.
	https://web.archive.org/web/20130118160500/https:/erowid.org/plants
	/mushrooms/mushrooms_dose.shtml, retrieved January 18, 2013

	From website mushroom c psilocin in du tend to have l can vary grea shows appro grams."	e "Psilocy onsisting ried wild nigher con tly from o ximate or	be cubensis is a of approximate mushrooms. Ind centrations. Not ne batch to the r al dosages for (a medium strength psilocybian ely .63% psilocybin and .60% door cultivated mushrooms the that potency of mushrooms next. The following chart (dried) Psilocybe cubensis in
	Oral P	. cubensis	Dosages	
	Threshold	.25 g	1/100 oz	
	Light	.25 - 1 g	1/100 - 1/28oz	
	Common	1 - 2.5 g	1/28 - 1/10oz	
	Strong	2.5 - 5 g	1/10 - 1/6oz	
	Heavy	5 + g	1/6oz +	
13 . The method of claim 11,	7. U.S. Pat. A	pp. Pub. 1	No. 2010/002840	69 "Extracts of Cranberry And
wherein the dosage form	Methods Of U	Using The	reof" (Published	February 4, 2010)
further comprises one or				
more pharmaceutically				
acceptable excipients				
comprising selected from				
buffering agents,				
antimicrobial preservatives,				
antioxidants, suspension				
agents, a tablet or capsule				
diluent, or a tablet				
disintegrant.				

From page 20 Table 6-continued	"Compounds id	entified in Extrac	
by DART TOF-MS.			
TABLE 6-c	continued		
Compounds identified in Ext	Compounds identified in Extract 6 by DART TOF-MS.		
Compound Name	Measured Mass	Relative Abundance (%)	
6N-Benzoyl Adenine	240.0966	0.7118	
Scytolide	241.0755	4.2887	
4-Nitrophenylhydrazone Benzaladehyde	242.0942	1.1255	
Fructose 2-Chloroethyl glycoside	243.0636	9.566	
6-Amino-3-ribofuranosyl-4(3H)- pyrimidinone	244.0859	1.5197	
biotin	245.0871	1.767	
2,6-Dideoxy-3-C-methyl- arabinoside	247.1159	3.6632	
4-Amino-4,6-dideoxy-3-C- methylmannose Me glycoside	248.1478	1.3621	
2,5-Anhydroglucitol, 1,3,4-Tri- Me	249.1397	3.1727	
2-Acetamido-2-deoxyglucose 3,4- Di-Me	250.1333	0.9623	
N,N'-Dimethyl-N,N'-dinitroso- 1,4-benzenedicarboxamide	251.0717	1.0402	
Bis(2-hydroxyethyl) ester 1,4- Benzenedicarboxylic acid	255.0869	2.8572	
2-[[(3- Methylphenyl)amino]carbonyl]- benzoic acid	256.1013	1.4758	
Norbaeocystine	257.0782	2.1881	
Lamiophlomiol C	259.0885	5.1127 "	

From page 19 Table 6-continued "			
TABLE	6		
Compounds identified in Extrac	t 6 by DART TO	DF-MS.	-
Compound Name	Measured Mass	Relative Abundance (%)	
3-Aminodihydro-2(3H)-furanone	102.0505	0.0625	-
Farmiserina	103.0439	0.2314	
1,4-benzoquinone	109.0285	16.0092	
1,2-Benzenediol	111.0455	1.6796	
2-Hydroxypropanoic acid	113.0246	2.4631	
5-azauracil	114.0387	0.4221	
4-methylene-heptane	114.1469	0.0169	
5-Hydroxymethyl-2(5H)-furanone	115.0431	3.586	
octane	115.157	0.0331	
butyl isothiocyanate	116.0484	0.3459	
indole	118.071	0.1563	
Succinic acid	119.037	10.1939	
L-threonine	120.0604	4.724	
Benzoic acid	123.0516	1.3274	
niacin	124.0441	0.7678	
4-methyl-5-vinylthiazole	126.0375	5.6176	
pyrogallol/phlorglucinol	127.0389	100	,,
	m page 19 Table 6-continued " TABLE <u>Compounds identified in Extrac</u> <u>Compound Name</u> 3-Aminodihydro-2(3H)-furanone Farmiserina 1,4-benzoquinone 1,2-Benzenediol 2-Hydroxypropanoic acid 5-azauracil 4-methylene-heptane 5-Hydroxymethyl-2(5H)-furanone octane butyl isothiocyanate indole Succinic acid L-threonine Benzoic acid niacin 4-methyl-5-vinylthiazole pyrogallol/phlorglucinol	m page 19 Table 6-continued " TABLE 6 Compounds identified in Extract 6 by DART TO Compound Name Measured Measured Mass 3-Aminodihydro-2(3H)-furanone 102.0505 Farmiserina 103.0439 1,4-benzoquinone 109.0285 1,2-Benzenediol 111.0455 2-Hydroxypropanoic acid 113.0246 5-azauracil 114.0387 4-methylene-heptane 114.1469 5-Hydroxymethyl-2(5H)-furanone 115.0431 octane 115.157 butyl isothiocyanate 116.0484 indole 118.071 Succinic acid 119.037 L-threonine 120.0604 Benzoic acid 123.0516 niacin 124.0441 4-methyl-5-vinylthiazole 126.0375 pyrogallol/phlorglucinol 127.0389	m page 19 Table 6-continued " TABLE 6 <u>Compounds identified in Extract 6 by DART TOF-MS.</u> <u>Relative</u> <u>Measured</u> <u>Abundance</u> <u>Compound Name</u> 102.0505 3-Aminodihydro-2(3H)-furanone 102.0505 5 0.0625 Farmiserina 103.0439 0.2314 1,4-benzoquinone 109.0285 16.0092 1,2-Benzenediol 111.0455 1.6796 2-Hydroxypropanoic acid 113.0246 2.4631 5-azauracil 114.0387 0.4221 4-methylene-heptane 114.1469 0.0169 5-Hydroxymethyl-2(5H)-furanone 115.0431 3.586 octane 115.157 0.0331 butyl isothiocyanate 116.0484 0.3459 indole 118.071 0.1563 Succinic acid 119.037 10.1939 L-threonine 120.0604 4.724 Benzoic acid 123.0516 1.3274 niacin 124.0441 0.7678 4-methyl-5-vinylthiazole 126.0375 5.6176 pyrogallol/phlorglucinol 127.0389 100

From [0083] "Compositions can be in the form of a paste, resin, oil, powder or liquid. Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for reconstitution with water or other suitable vehicle prior to administration. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, methyl cellulose, or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters or ethyl alcohol); preservatives (e.g., methyl or propyl phyroxybenzoates or sorbic acid); and artificial or natural colors and/or sweeteners. Compositions of the liquid preparations can be administered to humans or animals in pharmaceutical carriers known to those skilled in the art. Such pharmaceutical carriers include, but are not limited to, capsules, lozenges, syrups, sprays, rinses, and mouthwash."

From **[0086]** "A tableting powder can be formed by adding about 1 to 40% by weight of the powdered extract, with between 30 to about 80% by weight of a dry water-dispersible absorbent such as, but not limited to, lactose. Other dry additives such as, but not limited to, one or more sweetener, flavoring and/or coloring agents, a binder such as acacia or gum arabic, a lubricant, a disintegrant, and a buffer can also

	be added to the tableting powder. The dry ingredients are screened
	to a particle size of between about 50 to about 150 mesh. Preferably.
	the dry ingredients are screened to a particle size of between about 80
	to about 100 mesh "
	From [0089] "In a preferred implementation, the tableting powder is
	made by mixing in a dry nowdered form the various components
	as described above a gractive ingredient (extract) diluent
	as described above, e.g., active ingredient (extract), undent,
	sweetening additive, and havoring, etc. All overage in the range of $\frac{1}{2}$
	about 10% to about 15% of the active extract can be added to
	compensate for losses during subsequent tablet processing. The
	mixture is then sifted through a sieve with a mesh size preferably in
	the range of about 80 mesh to about 100 mesh to ensure a generally
	uniform composition of particles."
14 . The method of claim 11,	9. Intl. Pat. Doc. No. WO2016001922 "METHODS, DEVICES AND
wherein the dosage form	SYSTEMS FOR PULMONARY DELIVERY OF ACTIVE
further comprises one or	AGENTS" (Published January 7, 2016)
more extracts of: Bacopa	
monnieri, Centella asiatica,	From claim 1 "A method of pulmonary delivering to a subject at
Gingko biloba, Zingiber	least a first pharmacologically active agent and a second
officinale, Ocimum sanctum,	pharmacologically active agent, at least one of which being in at
Polygonum cuspidatum,	least one plant material, the method comprising independently
Origanum vulgare, Origanum	delivering the agents to the subject using a metered dose inhaler
onites, Rosmarinus	device configured to vaporize at least a first pre-determined vaporized
officinalis, Rosmarinus	amount of said first agent and at least a second pre-determined
eriocalyx, Curcuma longa,	vaporized amount of said second agent upon controllably heating said
Camellia sinensis, Lavandula	at least one plant material, wherein said heating is effected such that
spica, Scutellaria lateriflora,	said first pre-determined vaporized amount is delivered to the subject
Avena sativa, Avena	successively, concomitantly and/or at least partially overlapping with
bvzantine. Salvia divinorum.	said second pre-determined vaporized amount, and wherein each of
Banisteriopsis caapi.	said pre-determined vaporized amounts of each of said agents induces
Psychotria species.	in the subject independently at least one pharmacokinetic effect and/or
Tabernanthe iboga	at least one pharmacodynamic effect."
Voacanga africana	
Tabernaemontana undulate	From claim 51 "The method of any one of claims 1-2 and 26-50
I ophophora williamsii	wherein said at least one plant is selected from the group consisting of
Inomora tricolor Armereia	Cannahis sativa Cannahis indica Cannahis ruderalis Acacia spp
namosa Cannahis satiya	Amanita muscaria Vage Atrona helladonna Areca catechu
Cannabis indica Cannabis	Amamanaia ann. Brunfalaia latifalia. Dagmanthug illinoanaig
Cannabis indica, Cannabis	Brughansia spp., Brumeisia lautona, Desmanutus innoensis,
thereof	Damsteriopsis caapi, menocereus spp., meooroma cacao, Capsicum
	spp., Cesti uni spp., Eryunoxyiuni coca, Solenosiemon scutellarioides,
	Ai unuo uonax, Conca arabica, Datura spp., Destoniainia spp.,
	I DIDIODIEIVS CADIEIANA, EDNEURA SINICA, CIAVICEDS DURDUREA. PAULINIA

cupana, Argyreia nervosa, Hyoscyamus niger, Tabernanthe iboga, Lagochilus inebriens, Justicia pectoralis, Sceletium tortuosum, Piper methysticum, Catha edulis, Mitragyna speciosa, Leonotis leonurus, Nymphaea spp., Nelumbo spp., Sophora secundiflora, Mucuna pruriens, Mandragora officinarum, Mimosa tenuiflora, Ipomoea violacea, Psilocybe spp., Panaeolus spp., Myristica fragrans, Turbina corymbosa, Passiflora incarnata, Lophophora williamsii, Phalaris spp., Duboisia hopwoodii, Papaver somniferum, Psychotria viridis, spp., Salvia divinorum, Combretum quadrangulare, Trichocereus pachanoi, Heimia salicifolia, Stipa robusta, Solandra spp., Hypericum perforatum, Peganum harmala, Tabernaemontanaspp, Camellia sinensis, Nicotiana tabacum, rusticum, Virola theidora, Voacanga africana, Lactuca virosa, Artemisia absinthium, Ilex paraguariensis, Anadenanthera spp., Corynanthe yohimbe, Calea zacatechichi, Coffea spp. (Rubiaceae), a Sapindaceae, Camellia spp., Malvaceae spp., Aquifoliaceae spp., Hoodia, spp. Chamomilla recutita, Passiflora incarnate, Camellia sinensis, Mentha piperita, Mentha spicata, Rubus idaeus, Eucalyptus globulus, Lavandula officinalis, Thymus vulgaris, Melissa officinalis, Aloe Vera, Angelica, Anise, Ayahuasca (Banisteriopsis caapi), Barberry, Black Horehound, Blue Lotus, Burdock, Camomille/Chamomile, Caraway, Cat's Claw, Clove, Comfrey, Corn Silk, Couch Grass, Damiana, Damiana, Dandelion, Ephedra, Eucalyptus, Evening Primrose, Fennel, Feverfew, Fringe Tree, Garlic, Ginger, Ginkgo, Ginseng, Goldenrod, Goldenseal, Gotu Kola, Green Tea, Guarana, Hawthorn, Hops, Horsetail, Hyssop, Kola Nut, Kratom, Lavender, Lemon Balm, Licorice, Lion's Tail (Wild Dagga), Maca Root, Marshmallow, Meadowsweet, Milk Thistle, Motherwort, Passion Flower, Passionflower, Peppermint, Prickly Poppy, Purslane, Raspberry Leaf, Red Poppy, Sage, Saw Palmetto, Sida Cordifolia, Sinicuichi (Mayan Sun Opener), Spearmint, Sweet Flag, Syrian Rue (Peganum harmala), Thyme, Turmeric, Valerian, Wild Yam, Wormwood, Yarrow, Yerba Mate, Yohimbe, and any part and any combination thereof."

From page 76 line 29 - page 77 line 1 "In some embodiments, the active agent is a terpenoid, alkaloid or cannabinoid. For example, in some embodiments, the active agent is a diterpenoid such as, but not limited to salvinorin A from salvia. In other embodiments, the active agent is an alkaloid such as, but not limited to, benzoylmethylecgonine from the coca plant, or the active agent is a tryptamine such as psylocibin from mushrooms."

From page 23 line 21 - 30 "According to some of any of the embodiments described herein, the personally perceived

therapeutic effect corresponds to a symptom, the symptom being selected from the group consisting of pain, migraine, depression, cognitive function deficit, attention deficit, hyperactivity, anxiety disorders, diarrhea, nausea, vomiting, insomnia, delirium, appetite variations, sexual dysfunction, spasticity, increased intra ocular pressure, bladder dysfunction, tics, Tourette symptoms, post traumatic stress disorder (PTSD) symptoms, inflammatory bowel disease (IBD) symptoms, irritable bowel syndrome (IBS) symptoms, hyper tension, hemorrhagic symptoms, septic and cardiogenic shock, drug addiction and craving, withdrawal symptoms, tremors and other movement disorders."

8. CHYCHO, "The Boundary Salvia divinorum, Fasting & Mushrooms - P. cubensis" April 9, 2007; retrieved from Erowid; retrieved from Web Archives.

https://web.archive.org/web/20220916125803/https://www.erowid.org/ experiences/exp.php?ID=53239, retrieved April 9, 2007

DOSE: T+ 0:00	repeated	sublingual	<u>Salvia divinorum</u>	(tea)
T+ 0:00	3.0 g	oral	Mushrooms - P. cubensis	(dried)
T+ 1:30	1 bowl	smoked	Salvia divinorum	(leaves)
BODY WEIGH	T: 180 lb			

From webpage "Brazilian Cubensis: I was able obtain a few grams of a recent crop, harvested and dried within the previous month. I weighed out 2 three-gram batches. Just in case I needed the trip to be more intense I would eat the second batch, but I was only going to initially start with 3 grams. My experience with magic mushrooms rangers from consuming low doses for amplification of daily activities to a maximum dosage of 7 grams for personal journeys

Salvia Divinorum: My Salvia supply comes from Oaxaca, Mexico. My continual exposure to Salvia over the last few years has allowed me to become receptive to the dried leaf, hence no extract was used during this exercise. 42 grams (1.5 ounces) of dried Salvia were used with 10 cups of water to produce 6 cups of concentrated tea. The water was brought to a boil for 20 minutes and then put on simmer for an additional hour and forty minutes, for a total brewing time of 2 hours. Only half a cup was consumed during this journey. In addition, Salvia leaf was rolled into two joints, and a glass water bong was used with one bowl of dried leaf."

15. The method of claim 11, wherein the dosage form further comprises one or more of: mycelia, fruitbodies, mycelial extracts, or	 10. U.S. Pat. App. Pub. No. 2014/0220150 "Integrative Fungal Solutions For Protecting Bees And Overcoming Colony Collapse Disorder (CCD): Methods And Compositions" (Published August 7, 2014)
fruitbody extracts of fungi selected from <i>Antrodia</i> , <i>Beauveria</i> , <i>Copelandia</i> , <i>Cordyceps</i> , <i>Ganoderma</i> , <i>Grifola</i> , <i>Hericium</i> , <i>Inonotus</i> , <i>Isaria</i> , <i>Panaeolus</i> , <i>Phellinus</i> , or combinations thereof.	From [0063] "In essence, the inventor has devised a novel nutraceutical which is rich is a wide array of coumarins, phenols and polyphenols; and anti-viral, anti-fungal, anti-bacterial and anti- protozoal agents, and a wide diversity of specialized metabolites such as antioxidants and antimutagens, which are generated as a result of mycelium digesting grains or wood and are attractive to bees and supportive of their host defense against stressors and diseases. The extracts of mushrooms used medicinally for human health have an unexpected benefit for bee health too"
	 From [0083] "Useful and preferred fungal genera include, by way of example but not of limitation: the gilled mushrooms (Agaricales) Agaricus, Agrocybe, Armillaria, Clitocybe, Collybia, Conocybe, Coprinus, Coprinopsis, Flammulina, Giganopanus, Gymnopilus, Hypholoma, Inocybe, Hypsizygus, Lentinula, Lentinus, Lenzites, Lepiota, Lepista, Lyophyllum, Macrocybe, Marasmius, Mycena, Omphalotus, Panellus, Panaeolus, Sarcomyxa, Pholiota, Pleurotus, Pluteus, Psathyrella, Psilocybe, Schizophyllum, Stropharia, Termitomyces, Tricholoma, Volvariella, etc.; the polypore mushrooms (Polyporaceae) Albatrellus, Antrodia, Bjerkandera, Bondarzewia, Bridgeoporus, Ceriporia, Coltricia, Coriolus, Daedalea, Dentocorticium, Echinodontium, Fistulina, Flavodon, Fomes, Fomitopsis, Ganoderma, Gloeophyllum, Grifola, Heterobasidion, Inonotus, Irpex, Laetiporus, Meripilus, Oligoporus, Oxyporus, Phaeolus, Phellinus, Piptoporus, Polyporus, Poria, Schizophyllum, Schizopora, Trametes, Wolfiporia; the toothed mushrooms Hericium, Sarcodon, Hydnum, Hydnellum etc.; Basidiomycetes such as Auricularia, Calvatia, Ceriporiopsis, Coniophora, Cyathus, Lycoperdon, Merulius, Phlebia, Serpula, Sparassis and Stereum; Ascomycetes such as Cordyceps, Ophiocordyceps, Morchella, Tuber, Peziza, etc.; 'jelly fungi' such as Tremella; the mycorrhizal mushrooms (including both gilled and polypore mushrooms); fungi such as Phanerochaete (including those such as P. chrysosporium with an imperfect state and P. sordida)."
	neuroregenerative compounds. Species of Hericium, (including but not limited to Hericium erinaceus, Hericium corralloides and

Г

Hericium abietis) produce potent nerve growth factors causing regeneration of myelin on the axons of nerves and nerve regeneration. (See: http://www.huffingtonpost.com/paulstamets/mushroom-memory b-1725583.html). Psilocybin and psilocybin-producing fungi, including but not limited to species of Psilocybe, Panaeolus, Gymnopilus, Pluteus and Conocybe such as Psilocybe azurescens, Psilocybe cyanescens, Psilocybe allenii, Psilocybe cyanofibrillosa, Psilocybe cubensis, Psilocybe ovoideocystidiata, Psilocybe subaeruginosa, Copelandian Panaeoli (Copelandia cyanescens, Copelandia tropicalis, Copelandia bispora), Pluteus salicinus, Gymnopilus luteofolius, Gymnopilus spectabilis, Conocybe cyanopus and Conocybe smithii can trigger neurogenesis. (See Catlow et al., Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning, Exp Brain Res (2013) 228:481-491 DOI 10.1007/s00221-013-3579-0). Individually or in combination, mixtures of extracts of psilocybin mushroom and Hericium mushroom fruitbodies, or more preferably their mycelial extracts, could help repair neurons damaged by toxins, cholinergic pesticides, oxidation, old age, or other sources of neurotoxins. The net effect of ingesting these mixtures of nerve regenerating Hericium and psilocybin species would improve the neurological health of bees through neurogenesis and re-myelination, and indeed of animals, including humans. Another, improved form of "mycological honey" might incorporate these elements for the benefits of bees and people, improving cognition, preventing or repairing neuropathies presenting themselves as diseases to humans within scope of the definitions for Alzheimer's, Parkinson's, Parkisonisms, MS (multiple sclerosis), or as vet uncategorized forms of neurological impairment. Indeed such combinations could increase intelligence, sensory abilities, memory, reflexes, reaction times, and problem solving abilities. As such a 'smart mycological honey' is anticipated to be within the scope of this invention."

Electronic Acknowledgement Receipt			
EFS ID:	48613109		
Application Number:	18114381		
International Application Number:			
Confirmation Number:	9425		
Title of Invention:	PSILOCYBIN COMPOSITIONS		
First Named Inventor/Applicant Name:	Paul Edward Stamets		
Customer Number:	23409		
Filer:	Sisi Li		
Filer Authorized By:			
Attorney Docket Number:	888690-9002-US18		
Receipt Date:	20-SEP-2023		
Filing Date:	27-FEB-2023		
Time Stamp:	13:26:43		
Application Type:			

Payment information:

Submitted with Payment	yes		
Payment Type	CARD		
Payment was successfully received in RAM	\$72		
RAM confirmation Number	E20239JD26415830		
Deposit Account			
Authorized User			

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:

File Listing:

Document Number	Document Description	File Name	File Size(Bytes)/ Message Digest	Multi Part /.zip	Pages (if appl.)
			46806		
1	Concise Description of Relevance	ncise Description of Relevance Concise-description-generated pdf		no	8
Warnings:					
Information:					
			71178	no	4
2	Third-Party Submission Under 37 CFR 1.290	Third-party-preissuance- submission.pdf	a96b6901dbf525f5da2b7f0334dd974737a 26bbd		
Warnings:					
Information:					
			23614		
3	Request for Notification of Non- compliant Third-Party Submission	Third-party-notification- request.pdf	0a23caaced48fcf13482039d7b6cba55d43f 3614	no	1
Warnings:			·		
Information:					
			1180061	no	
4	Concise Description of Relevance	Claims_Chart.pdf	f76cecc0b770d2879a202fe06a21caeb8c7a 8be0		35
Warnings:			· · · · · · · · · · · · · · · · · · ·	·	
Information:					
			2918617		
5	Evidence of Publication	1_US20080194553A1.pdf	d0bee3ff2814783d2e081df578d58a9d16e 6ad3f	no	30
Warnings:					
Information:					
			284720	no	1
6	Evidence of Publication	2_PSILOLOVER333.pdf	6e26c968756bce53523696c3a800e591812 1e5ad		
Warnings:		·	·		
Information:					

7	Evidence of Publication	6_EROWID.pdf	223229 26bb2e8a08b1189fd81ca33c6b46f3a66e6 92d1f	no	1
Warnings:			•		- -
Information					
			3343574	no	
8	Evidence of Publication	ation 7_US20100028469A1.pdf	df4fc49128702890230fa0147867a1118571 a55c		38
Warnings:	i	•			
Information					
			539471	no	
9	Evidence of Publication	8_CHYCHO.pdf	cd5f590db0871c94bee002ed8368f6002f56 d4be		2
Warnings:					
Information					
		9_WO2016001922A1.pdf	10275797	no	184
10	Evidence of Publication		9d2e6759c1a2b853196115a8da0ea70f4ae 3c4bc		
Warnings:		1			
Information	1				
			3437160		
11	Evidence of Publication	10_US20140220150A1.pdf	8b79fc5f793092eaea33cf422650c0fe3d308 c17	no	21
Warnings:					
Information					
		3_WIECZOREK.pdf	4787778	no	34
12	Evidence of Publication		26c401a6caf7d90c8482147e931dc53c9644 0c85		
Warnings:		1			
Information					
			645196		
13	Evidence of Publication	4_CARTZ.pdf	404ef12994d18c2f388374c9b5223eeedd3 d5022	no	6
Warnings:					
Information					

14	Evidence of Publication	5_MATTILA.pdf	1687838 50009bd1f3cc784086cce9525ffd0a9fa276c4 6f8	no	6
Warnings:					
Information:		1			
			37226		
15	Fee Worksheet (SB06)	fee-info.pdf	68e84a07d9dd4d6d0c608a15a7585c51e5 bbf514	no	2
Warnings:		•			
Information:					
		Total Files Size (in bytes)	295	502265	
This Acknow characterized Post Card, as <u>New Applica</u> If a new appl 1.53(b)-(d) an Acknowledg <u>National Stag</u> If a timely su U.S.C. 371 an national stag <u>New Internat</u> If a new inter an internatio and of the In national secu- the applicati	ledgement Receipt evidences receip d by the applicant, and including page described in MPEP 503. <u>tions Under 35 U.S.C. 111</u> ication is being filed and the applican nd MPEP 506), a Filing Receipt (37 CF ement Receipt will establish the filin ge of an International Application un bmission to enter the national stage ad other applicable requirements a F ge submission under 35 U.S.C. 371 wittional Application Filed with the USF mational application is being filed an onal filing date (see PCT Article 11 an ternational Filing Date (Form PCT/Re urity, and the date shown on this Ack on.	at on the noted date by the US ge counts, where applicable. FR 1.54) will be issued in due of g date of the application. <u>Inder 35 U.S.C. 371</u> of an international applicati form PCT/DO/EO/903 indicati ill be issued in addition to the <u>PTO as a Receiving Office</u> and the international application of MPEP 1810), a Notification O/105) will be issued in due co knowledgement Receipt will of	SPTO of the indicated It serves as evidence components for a filin course and the date s on is compliant with ng acceptance of the Filing Receipt, in du ion includes the nece of the International ourse, subject to pres establish the internat	document of receipt s g date (see hown on th the condition application course. ssary comp Application criptions co cional filing	s, imilar to a 37 CFR is ons of 35 as a onents for Number oncerning date of