IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Serial No.: 18/024,517

Confirmation No.: 6509

Group No.:

Filing or 371(c) Date: 03 March 2023

Examiner:

Entitled: NOVEL SAFRYLAMINE DERIVATIVES HAVING PRODRUG PROPERTIES

THIRD-PARTY PRE-ISSUANCE SUBMISSION

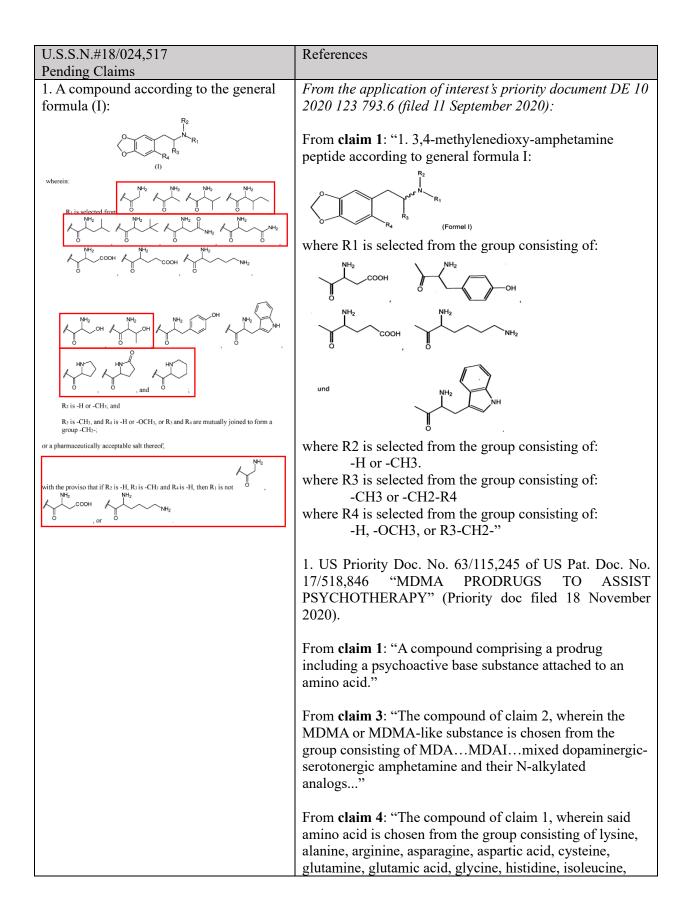
Examiner:

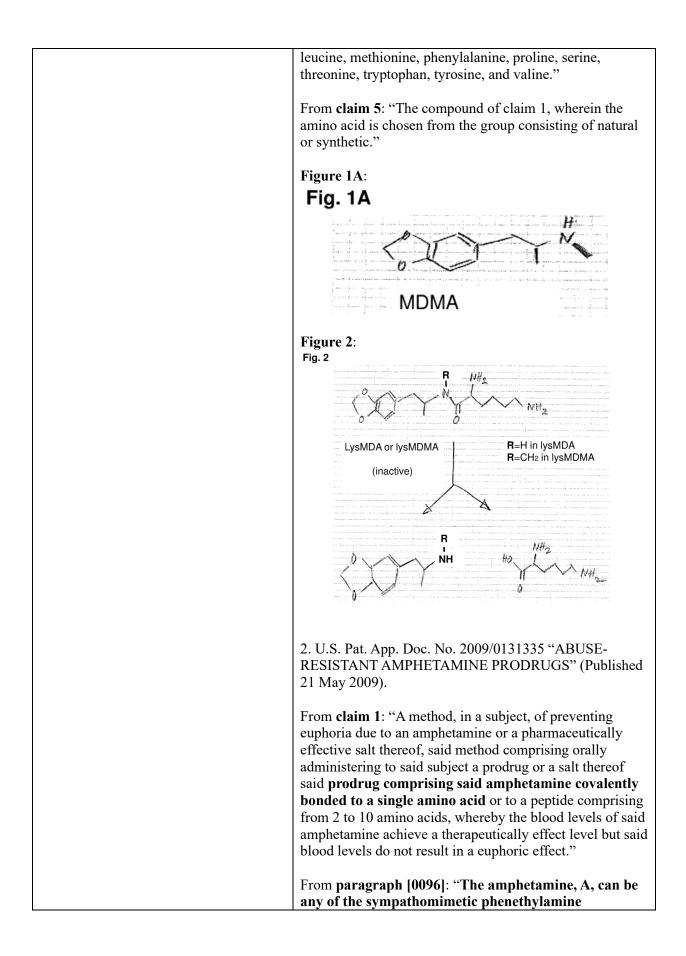
In re

The following documents, which are also identified in the Form PTO/SB/429 filed herewith, are submitted for your consideration as being of potential relevance to the examination of the present application.

1. US Priority Doc. No. 63/115,245 of US Pat. Doc. No. 17/518,846 "MDMA PRODRUGS TO ASSIST PSYCHOTHERAPY" (Priority doc filed 18 November 2020).

2. U.S. Pat. App. Doc. No. 2009/0131335 "ABUSE-RESISTANT AMPHETAMINE PRODRUGS" (Published 21 May 2009).

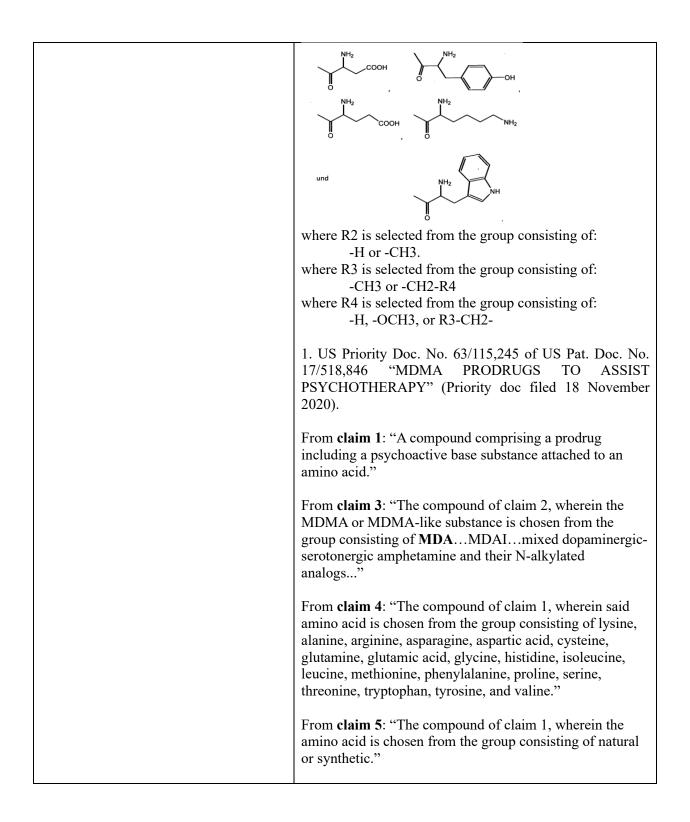

3. MAZUR (1970) "Structure-taste relation of aspartic acid amides" J. Med. Chem. Vol 13(6): 1217-1221.

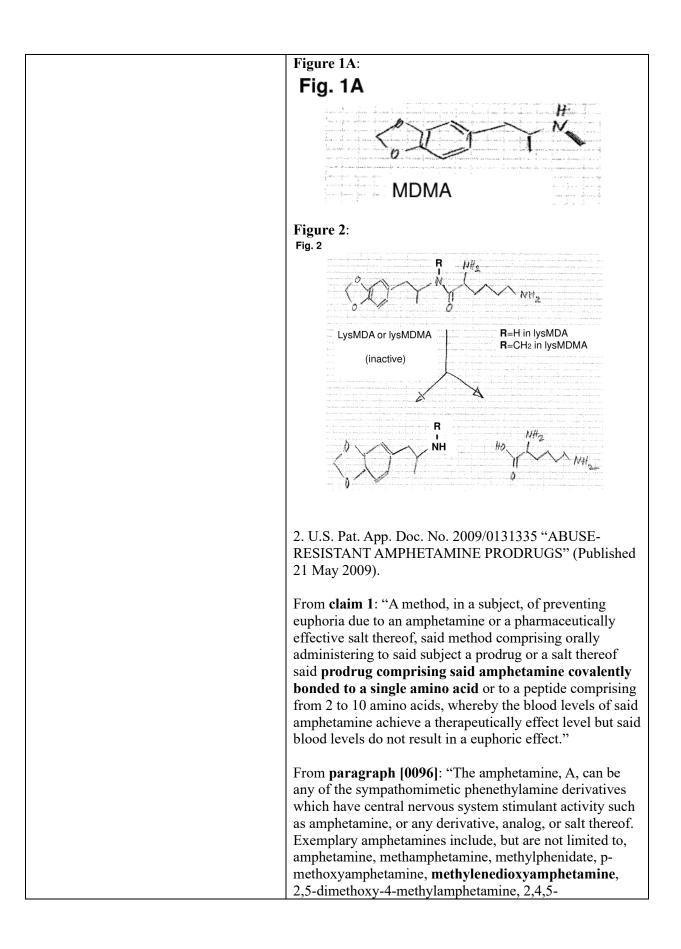

4. Gatch (2016) "Locomotor, discriminative stimulus, and place conditioning effects of MDAI in rodents" Behavioral Pharmacology, Vol. 27 (6): 497-505.

5. Nichols (1986) "Synthesis and Evaluation of 2,3-Dihydrobenzofuran Analogues of the Hallucinogen 1-(2,5-Dimethoxy-4methylphenyl)-2-aminopropane: Drug Discrimination Studies in Rats" Journal of Medicinal Chemistry, Vol. 29 (2): 302-304.

6. Bahji (2019) "Efficacy of 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy for posttraumatic stress disorder: A systematic review and meta-analysis" Progress in Neuropsychopharmacology & Biological Psychiatry, Vol. 96, 109735.

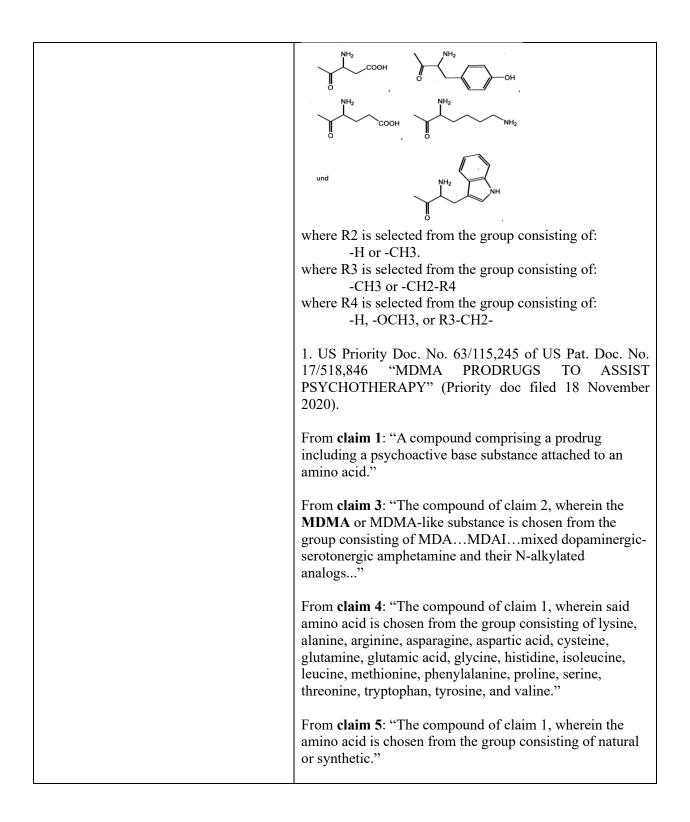
Attached hereto is a claim chart providing a concise description of the relevance of each reference in the document list to the elements of the presently pending claims.

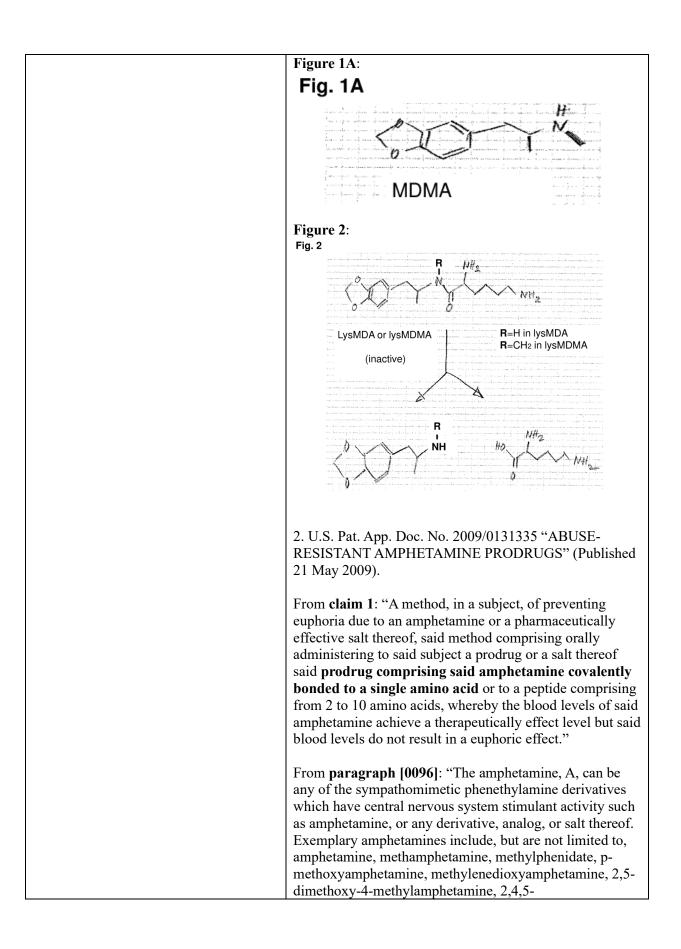




derivatives which have central nervous system
stimulant activity such as amphetamine, or any
derivative, analog, or salt thereof. Exemplary
amphetamines include, but are not limited to,
amphetamine, methamphetamine, methylphenidate, p-
methoxyamphetamine, methylenedioxyamphetamine,
2,5-dimethoxy-4-methylamphetamine, 2,4,5-
trimethoxyamphetamine, and 3,4-
methylenedioxymethamphetamine"
From paragraph [0107]: "Each amino acid can be any
one of the L- or D-enantiomers, preferably L-enantiomers,
of the naturally occurring amino acids: alanine (Ala or A),
arginine (Arg or R), asparagine (Asn or N), aspartic acid
(Asp or D), cysteine (Cys or C), glycine (Gly or G),
glutamic acid (Glu or E), glutamine (Gln or Q), histidine
(His or H), isoleucine (Ile or I), leucine (Leu or L), lysine
(Lys or K), methionine (Met or M), proline (Pro or P),
phenylalanine (Phe or F), serine (Ser or S), tryptophan
(Trp or W), threonine (Thr or T), tyrosine (Tyr or Y), and
valine (Val or V)"
3. MAZUR (1970) "Structure-taste relation of aspartic acid
amides" J. Med. Chem. Vol 13(6): 1217-1221.

 Tab	le 2 (entry 64):					
	,		ars II			
No.	X		ACID AMIDES sp-X" Mp, "C	alt, deg	Formula	Taste
50 51	HNCH(CH ₃)CH ₂ C ₆ H ₅ ; L- HNCH(CH ₃)CH ₂ C ₆ H ₅ ; D-	88 AC 98 AC	197–198 W 222–225 E. W	- 12 M + 14 W	$C_{13}H_{15}N_2O_3$ $C_{13}H_{16}N_2O_3$	50 0
52 53	HNCH(CH ₄)CH ₂ C ₄ H ₅ ⁶ HNCH ₂ CH ₂ C ₄ H ₅	79 M 70 AC	164-166 A-W 212-214 P-W	+ 34 M - 15 W	$C_{14}H_{20}N_4O_3$ $C_{12}H_{16}N_4O_3$	-
54 55	$HNCH(C_2H_3)CH_2C_6H_3$ $HNC(CH_3)_2CH_2C_6H_3$	91 AC 96 AC	158~163 MET 159-161 W	+8 M ~16 M	$C_{14}H_{26}N_2O_3 + 0$, 25H ₂ O $C_{14}H_{26}N_2O_3$	5 20
56		91 M	223-224 M-W	-6 II	$C_{11}H_{16}N_2O_2$	10
	CH:			0.11	< 111111-120-1	
57 58	HNCHCHC ₆ H ₃ ; t- HNCH ₂ CH(CH ₃)C ₆ H,	95 M 70 AC	175-178 182-188 W	+5 M -20 W	$C_{14}H_{18}N_2O_8 \cdot H_2O$ $C_{12}H_{18}N_2O_4$	
59 60	N(CH ₂)CH(CH ₈)CH ₂ C ₆ H ₅ ; 1	84 M	164-166 185-187	+47 W +12 W	$C_{14}H_{20}N_2O_1 \cdot 0.5H_2O$	
61	$N(CH_3)CH(CH_3)CH_2C_6H_3$; D- HNCH(CH_3)CH_2CH_2C_6H_3	82 M 95 AC	190-196 MW	+16 H	$C_{14}H_{20}N_2O_2 \cdot 0.5H_2O$ $C_{14}H_{20}N_2O_3$	5
62 63	HNCH(CH ₄)CH ₂ OC ₆ H ₂ HNCH ₂ CH ₂ OC ₆ H ₂	68 M 85 AC	180~184 M=W 184-185 W	+11 H -13 H	C ₁₂ H ₁₈ N ₂ O ₄ C ₁₂ H ₁₆ N ₂ O ₄	10 +
64 65	$HNCH(CH_3)CH_2C_4H_3(OCH_2O)-3_14$ $HNCH(CH_2OH)CH_2C_4H_5;$ 1	95 M 95 AC	189–192 237–238 W	+6 M -26 AC	$C_{14}H_{18}N_2O_5$ $C_{13}H_{18}N_2O_4$	
66 67	HNCH(CH ₃)CH(OH)C ₈ H; HNCH(CH ₃)CH ₇ C ₆ H ₄ OH-4	98 M 95 M	188-190 M 160-185	+ 10 M + 5 W	$C_{11}H_1 N_2O_4 \cdot 0.5 H_2O_1 C_{10}H_1 N_2O_4$	+
68 69	HNCH ₂ CH ₂ C ₄ H ₄ OH-4 HNCH(CH ₂ OH)CH ₂ C ₈ H ₄ OH-4; 1	72 AC 44 M	209~210 W 212~213 M	21 W 10 H	$C_{12}H_{18}N_2O_4$ $C_{18}H_{18}N_2O_4$	+
70	HNCH(CH ₃)CH ₂ C ₆ H ₄ NHSO ₂ CH ₁ -4; 1	96 M	199-208 W	+14.11	$C_{14}H_{21}N_8O_5S$	
71 72	$HNCH(CH_3)CH_2C_6H_4F-4$ $HNCH_2CH_2C_4H_4F-4$	87 M 74 M	203-209 M-ET 208-209 W	+9 H −6 M	$C_{12}H_{17}FN_2O_3$ $C_{12}H_{15}FN_2O_3$	20 5
73	HNCH(CH.)CH2	85 M	168-180 M-ET	+6 H	$C_{11}H_{16}N_2O_4{\cdot}0.333H_2O$	10
74	HNCH,CH, L	71 M	195-196 M	- 17 M	$\mathrm{C}_{10}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}_{1}$	+
75	HNCH/CH_/CH_	96 AC	203-205 M	- 22 M	$C_{45}H_{19}N_4O_3$	
76	HNCH(CH ₃)CH ₂ -e-C ₆ H ₁₁ ; 1	84 AC	184-185 M-W	- 19 M	$\mathrm{C}_{13}\mathrm{H}_{13}\mathrm{N}_{2}\mathrm{O}_{3}$	50
77 78	$HNCH(CH_0)CH_{2*}c_*C_6H_{11}; D=$ $HNCH_2CH_{2*}c_*C_8H_{11}$	60 M 94 AC	207-208 M-W 193-202 M-W	$^{+16}_{+7}$ M +7 AC	$C_{13}H_{24}N_2O_3$ $C_{13}H_{22}N_2O_3$	5 10
79 80	$N(CH_3)CH(CH_4)CH_{2^*}c^*C_6H_{11}$; 1 $N(CH_3)CH(CH_4)CH_{2^*}c^*C_6H_{11}$; 1	78 M 64 M	179–180 P–ET 194–196	- 14 W +1 W	CuH28N2O1+0.25H2O CuH28N2O2	
81 82	HN-e-C ₆ H ₁₁ HNCH(CH ₃)CH ₂ CH ₂ CH ₃	91 M 92 M	224–225 W 190–194 A W	+16 H +9 AC	$C_{10}H_{18}N_2O_3$ $C_5H_{18}N_2O_4 \cdot 0.5H_2O$	 0
83	HN(CH ₂) ₃ CH(CH ₄)CH ₃	89 M	222223 MW		$C_{10}H_{20}N_2O_3$	0
84 85	$HNCH(CH_3)CH_2CH(CH_3)CH_3; 1_{*}$ $HNCH(CH_3)CH_2CH(CH_3)CH_3; 0_{*}$	91 AC 92 AC	166–168 W 201–202 W	−17 M +9 M	$C_{10}H_{20}N_2O_3 \cdot 0$, $5H_2O$ $C_{10}H_{20}N_2O_3 \cdot 0$, $25H_2O$	
86 87	$HNCH(C_2H_3)CH_2CH_2CH_3$ $HN(CH_2)_3CH_3$	93 M 88 M	196-200 AW 200-201 W	+12 AC +9 AC	C ₁₈ H ₂₈ N ₂ O ₃ , H ₂ O C ₁₈ H ₂₈ N ₂ O ₃ , 0, 25H ₂ O	
88 89	HNCH(CH ₄) ₄ CH ₄ HN(CH ₄) ₆ CH ₄	98 M 89 M	188 -193 A -W 200-201 W	+11 AC +8 AC	$C_{10}H_{20}N_2O_3 \cdot 0.5H_2O$ $C_{11}H_{22}N_2O_3 \cdot 0.25H_2O$	30 +
90 91	HNCH(CH ₃)(CH ₂) ₄ CH ₂	95 M	190~194	± 7 AC	$C_{11}H_{22}N_2O_3$	20 +
92	$HNCH(CH_3)CH_2CH(CH_3)CH_2CH_2$ $HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3$	94 M 94 M	162–166 W 184–188 A–W	-2 M +9 AC	$C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$ $C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$	50
93 94	$HNCH(C_2H_5)(CH_2)_3CH_3$ $HNCH(CH_3)(CH_2)_4CH_3;$ 1	98 M 94 M	190–195 187–189 W	+9 AC 5 M	$C_{11}H_{22}N_2O_3 \cdot 0$, 5H ₂ O $C_{12}H_{22}N_2O_3$, H ₂ O	4: 50
95 96	$HNCH(CH_3)(CH_2)_4CH_3; L^d$ $HNCH(CH_3)(CH_2)_4CH_3; D$	97 M 96 M	213-214 M-W 217-218 M-W	-5 M +5 M	$C_{11}H_{22}N_2O_3 + 05H_2O_3$ $C_{11}H_{22}N_2O_3$	
97 98	$HNCH(CH_3)(CH_2)_4CH_3; D^d$ $HNCH(CH_2)CH_2CH_2CH(CH_2)CH_3; L-$	97 M 84 M	189–192 W 187–190 W	$^{+6}_{+23}$ H	$C_{15}H_{22}N_2O_3$ $C_{13}H_{22}N_2O_3 + 0.5H_2O$	100
99 100	$HNCH(CH_8)CH_2CH_2CH(CH_8)CH_8; \ L^d$	99 M	215-216 M-W	+2 M -3 M	C_1 ; H_2 ; N_2 O ₃	0
101	$HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3; D-HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3; D^4$	96 M 91 M	210–213 M–W 192–195 W	-26 H	$C_{11}H_{12}N_2O_3 \cdot 0.5H_2O$ $C_{11}H_{12}N_2O_3 \cdot 0.25H_2O$	+
102 103	HNCH(CH ₃)CH ₂ CH ₂ OCH ₂ CH ₃ HNCH(CH ₂)(CH ₂) ₃ CH ₃	77 M 85 M	166-170 M-ET 180-190	+3 M -8 M	$C_{10}H_{20}N_2O_4 \cdot 0.25H_2O \\ C_{12}H_{21}N_2O_3 \cdot 0.5H_2O$	10 10
⁴ See T ⁴ The ami	able I for abbreviations and explanations. de was derived from p-Asp. * All compound	^b The amies were analy	de was derived from zed for C, H, N.	i t-Glu. ≃Tl	he amide was deri ve d from	ntsAsp.
plac	atch (2016) "Locor e conditioning effer macology, Vol 27 (cts of	f MDAI i		,	
(ME meth MD stim psyc teste subs train intra	n abstract: "5,6-M DAI) has become a nylenedioxymethan AI is known to pro- nulus effects, but it chostimulant or hall ad for locomotor sti equently for discri- need to discriminate aperitoneally), meth- presitoneally, +MI	comr nphet oduc is no lucino mula ninat cocai	non subs tamine (M e MDMA t known ogen-like nt effects tive stimu ne (10 m hetamine	titute MDM A-like wheth e effec s in m alus e ag/kg, e (1 mg	for (±)-3,4- A) in Ecstas e discrimina her MDAI h ets. MDAI w ice and ffects in rats g/kg,	as 7as
	peritoneally), ±MI -)-2,5-dimethoxy-4		· –	-	-	• /


	 (0.5 mg/kg, intraperitoneally) from salineMDAI fully substituted for the discriminative stimulus effects of MDMA (2.5 mg/kg), (-)-2,5-dimethoxy-4-methylamphetamine hydrochloride (5 mg/kg), and cocaine (7.5 mg/kg), but produced only 73% methamphetamine-appropriate responding at a dose that suppressed responding (7.5 mg/kg). MDAI produced tremors at 10 mg/kg in one methamphetamine-trained rat. MDAI produced conditioned place preference from 0.3 to 10 mg/kg. The effects of MDAI on locomotor activity and drug discrimination were similar to those produced by MDMA, having both psychostimulant-like and hallucinogen-like effects; thus, MDAI may have similar abuse potential as MDMA. 5. Nichols (1986) "Synthesis and Evaluation of 2,3-Dihydrobenzofuran Analogues of the Hallucinogen 1-(2,5-Dimethoxy-4methylphenyl)-2-aminopropane: Drug Discrimination Studies in Rats" Vol. 29 (2): 302-304. From page 304, paragraph 2: "This is all the more difficult to explain in light of the fact that 2-methoxy-4,5-
	(methylenedioxy)amphetamine (8; MMDA-2) is active H ₃ C NH ₂ O CH ₃
	8
	and produces clear central effects at an oral dosage of 25 mg of the hydrochloride"
2. The compound of claim 1, wherein R_2 is -H, R_3 is -CH ₃ , and R_4 is -H.	From the application of interest's priority document DE 10 2020 123 793.6 (filed 11 September 2020):
	From claim 1 : "1. 3,4-methylenedioxy-amphetamine peptide according to general formula I:
	Control R ₃ (Formel I)
	where R1 is selected from the group consisting of:



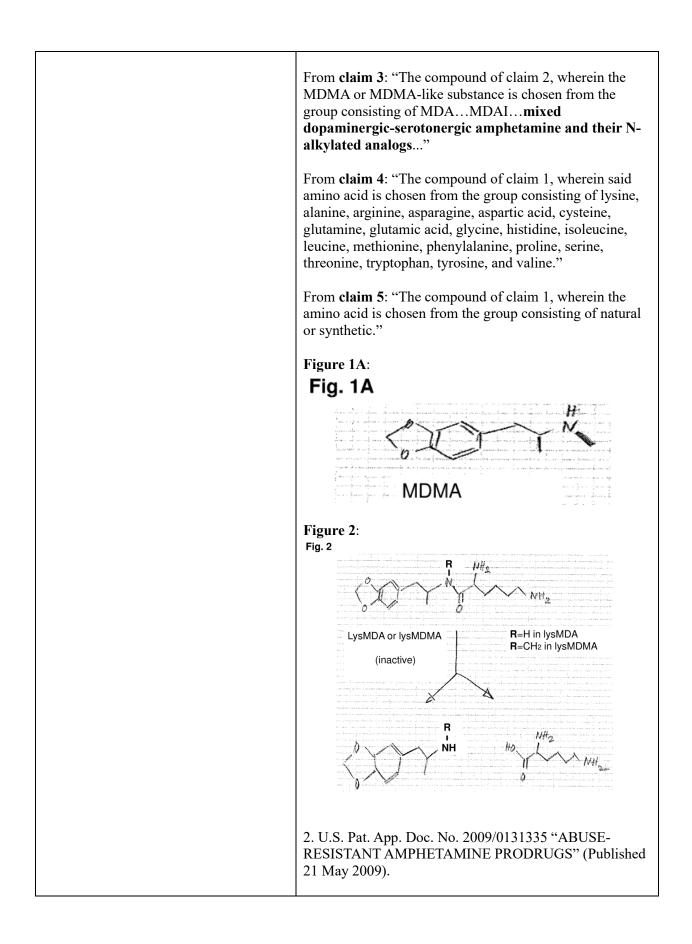
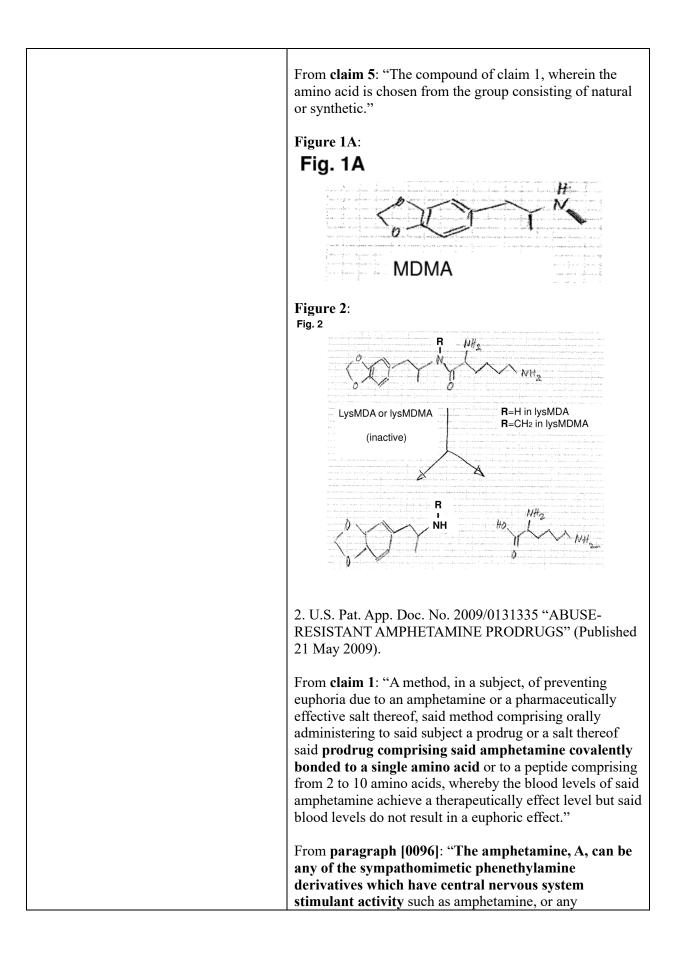

trimethoxyamphetamine, and 3,4 - methylenedioxymethamphetamine"
 From paragraph [0107]: "Each amino acid can be any one of the L- or D-enantiomers, preferably L-enantiomers, of the naturally occurring amino acids: alanine (Ala or A), arginine (Arg or R), asparagine (Asn or N), aspartic acid (Asp or D), cysteine (Cys or C), glycine (Gly or G), glutamic acid (Glu or E), glutamine (Gln or Q), histidine (His or H), isoleucine (Ile or I), leucine (Leu or L), lysine (Lys or K), methionine (Met or M), proline (Pro or P), phenylalanine (Phe or F), serine (Ser or S), tryptophan (Trp or W), threonine (Thr or T), tyrosine (Tyr or Y), and valine (Val or V)" MAZUR (1970) "Structure-taste relation of aspartic acid amides" J. Med. Chem. Vol 13(6): 1217-1221.

	Table 2 (entry 64):				
	,	TABLE II Aspartic Acid Amides			
	No. X 50 HNCH(CH ₃)CH ₄ CH; t- 51 HNCH(CH ₆)CH; CH; 52 HNCH(CH ₆)CH; CH; 53 HNCH(CH ₆)CH; 54 HNCH(CH ₆)CH; 55 HNCH(CH ₆)CH; 56 HNCH(CH ₆)CH; 56 HNCH(CH ₆)CH;	Asp-Sx ⁺ Yish, (r) Mp, (r) 88 AC 197–198 W 98 AC 222-225 E W 79 M 164–166 A W 70 AC 212-224 H P-W 91 AC 158–163 M.ET 96 AC 158–163 M.ET 96 AC 159–164 W 91 M 223–224 M.W	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
	CH; 57 HNCHCHAE,H; t- 58 HNCHCH(CH ₄)C,H; 59 N(CH ₂)CH(CH ₄)CH,CH; 50 N(CH ₂)CH(CH ₄)CH,CH; 61 HNCH(CH ₂)CH,CH; 62 HNCH(CH ₄)CH,CH; 62 HNCH(CH ₄)CH,OC,H; 64 HNCH(CH ₄)CH; 64 HNCH(CH ₄)CH; 65 HNCH(CH ₄)CH; 66 HNCH(CH ₄)CH; 67 HNCH(CH ₄)	95 M 175-178 70 AC 182-188 W 84 M 164-166 82 M 185-187 95 AC 190-196 M W 85 AC 184 M W 85 AC 184 HS W 95 M 180-192	+5 M CuHuSA0, H ₄ O $-$ -20 W CuHuSA0, H ₄ O $-$ +47 W CuHuSA0, 0.5H ₄ O $-$ +12 W CuHuSA0, 0.5H ₄ O $-$ +16 H CuHuSA0, 0.5H ₄ O $-$ +11 H CuHuSA0, 10 -15 H CuHuSA0, $+$ +6 M CuHuSA0, $-$		
	65 HNCH/CH ₂ OH/CH ₂ CH:: 1- 66 HNCH(CH ₂)CH(OH/CH). 67 HNCH(CH ₂)CH(CH). 68 HNCHCH,CH,OH-CH). 69 HNCHCH,CH,OH-GH,CH). 60 HNCHCH,CH,OH-GH,CH). 70 HNCHCH,CH,CH,CH,OH-H). 71 HNCH(CH). 72 HNCHCH,CH,CH,F+4 73 HNCHCH,CH,F-4	95 AC 237 238 W 98 M 188-490 M 95 M 160-485 72 AC 209-210 W 44 M 212-213 M	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
	74 HNCH,CH,	71 M 195~196 M	$-17~\mathrm{M} \qquad \mathrm{C_{10}H_{11}N_2O_1} \qquad +$		
	⁴ The amide was derived from n-Asp. ⁴ All compo	φ ⁴ 90 M 215-216 M−W 96 M 210-213 M−W 96 01 M 102-193 W− 77 M 106-170 M−ET 85 M 180-190 as. ¹⁶ The amide was derived fro and were analyzed for C, H, N.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
3. The compound of claim 1, wherein R ₂ is -CH ₃ , R ₃ is -CH ₃ , and R ₄ is -H.	 From the application of interest's priority document DE 10 2020 123 793.6 (filed 11 September 2020): From claim 1: "1. 3,4-methylenedioxy-amphetamine peptide according to general formula I: 				
	$ \begin{array}{c} $				
	where R1 is selected	from the group	consisting of:		


	trimethoxyamphetamine, and 3,4 -
	methylenedioxymethamphetamine"
	From paragraph [0107]: "Each amino acid can be any one of the L- or D-enantiomers, preferably L-enantiomers, of the naturally occurring amino acids: alanine (Ala or A), arginine (Arg or R), asparagine (Asn or N), aspartic acid (Asn or D), averagine (Cus or C), alwaine (Clu or C)
	(Asp or D), cysteine (Cys or C), glycine (Gly or G), glutamic acid (Glu or E), glutamine (Gln or Q), histidine
	(His or H), isoleucine (Ile or I), leucine (Leu or L), lysine (Lys or K), methionine (Met or M), proline (Pro or P), phenylalanine (Phe or F), serine (Ser or S), tryptophan (Trp or W), threonine (Thr or T), tyrosine (Tyr or Y), and value (Value V)"
	valine (Val or V)"
4. The compound of claim 1, wherein R ₂ is -H, R ₃ is -CH ₃ , and R ₄ is -OCH ₃ .	From the application of interest's priority document DE 10 2020 123 793.6 (filed 11 September 2020):
	From claim 1 : "1. 3,4-methylenedioxy-amphetamine
	peptide according to general formula I:
	R ₂
	where R1 is selected from the group consisting of:
	$\begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $
	und NH ₂ NH
	where R2 is selected from the group consisting of: -H or -CH3.
	where R3 is selected from the group consisting of: -CH3 or -CH2-R4
	where R4 is selected from the group consisting of: -H, -OCH3, or R3-CH2-
	1. US Priority Doc. No. 63/115,245 of US Pat. Doc. No. 17/518,846 "MDMA PRODRUGS TO ASSIST PSYCHOTHERAPY" (Priority doc filed 18 November 2020).
	From claim 1 : "A compound comprising a prodrug including a psychoactive base substance attached to an amino acid."

From claim 1 : "A method, in a subject, of preventing euphoria due to an amphetamine or a pharmaceutically effective salt thereof, said method comprising orally administering to said subject a prodrug or a salt thereof said prodrug comprising said amphetamine covalently bonded to a single amino acid or to a peptide comprising from 2 to 10 amino acids, whereby the blood levels of said amphetamine achieve a therapeutically effect level but said blood levels do not result in a euphoric effect."
From paragraph [0096]: "The amphetamine, A, can be any of the sympathomimetic phenethylamine derivatives which have central nervous system stimulant activity such as amphetamine, or any derivative, analog, or salt thereof. Exemplary amphetamines include, but are not limited to, amphetamine, methamphetamine, methylphenidate, p- methoxyamphetamine, methylenedioxyamphetamine, 2,5- dimethoxy-4-methylamphetamine, 2,4,5- trimethoxyamphetamine, and 3,4- methylenedioxymethamphetamine"
From paragraph [0107]: "Each amino acid can be any one of the L- or D-enantiomers, preferably L-enantiomers, of the naturally occurring amino acids: alanine (Ala or A), arginine (Arg or R), asparagine (Asn or N), aspartic acid (Asp or D), cysteine (Cys or C), glycine (Gly or G), glutamic acid (Glu or E), glutamine (Gln or Q), histidine (His or H), isoleucine (Ile or I), leucine (Leu or L), lysine (Lys or K), methionine (Met or M), proline (Pro or P), phenylalanine (Phe or F), serine (Ser or S), tryptophan (Trp or W), threonine (Thr or T), tyrosine (Tyr or Y), and valine (Val or V)"
3. MAZUR (1970) "Structure-taste relation of aspartic acid amides" J. Med. Chem. Vol 13(6): 1217-1221.

Table 2 (antana (4))				
Table 2 (entry 64):	TABLE II			
V	Aspartic Acid Amides Asp-X"	the Provider Prove		
No. X 50 HNCH(CH ₃)CH ₄ CdL: 51 HNCH(CH ₄)CH ₄ CdL: 52 HNCH(CH ₄)CH ₄ CdL: 53 HNCH(CH ₄)CH ₄ CdL: 54 HNCH(CH ₄)CH ₄ CdL: 55 HNCH(CH ₄)CH ₄ CdL: 56 HNCH(CH ₄)CH ₄ CdL: 61 HNCH(CH ₄)CH ₄ CdL:	Vield, '7 Mp, '7' 88 AC 197–198 W 98 AC 222–225 E W 70 M 164–166 A W 70 AC 212–214 P-W 91 AC 158–163 M-ET 96 AC 159–161 W 91 M 223-224 M-W	$\label{eq:asymptotic state} \begin{split} & [a]_0 deg & Formula' & Taste \\ & -12 M & C_{11} H_{3} N_i O_i & 50 \\ & +14 W & C_{14} H_{3} N_i O_i & 0 \\ & +34 M & C_{14} H_{3} N_i O_i & 0 \\ & -15 W & C_{12} H_{3} N_i O_i & 0 \\ & +8 M & C_{11} H_{3} N_i O_i & 0 \\ & +8 M & C_{11} H_{3} N_i O_i & 0 \\ & -6 H & C_{11} H_{3} N_i O_i & 20 \\ & -6 H & C_{11} H_{3} N_i O_i & 10 \\ \end{split}$		
 HNCHCHC₄H.; t- HNCH₄CH(CH₄)C₄H. N(CH₂)CH(CH₃)C₄C₄H. N(CH₂)CH(CH₃)CH₄C₄H.; t- N(CH₄)CH(CH₅)CH₄C₄H.; p- HNCH(CH₃)CH₄C₄H. HNCH(CH₃)CH₄C₄H. HNCH(CH₄)CH₄C₄H. HNCH(CH₄)CH₄C₄H. HNCH(CH₄)CH₄C₄H. 	95 M 175-178 70 AC 182-188 W 84 M 164-166 82 M 185-187 95 AC 190-196 MW 68 M 180-184 M W 85 AC 190-196 MW 68 M 180-184 M W 85 AC 190-196 MW 69 M 189-192	$\begin{array}{ccccc} +5 & M & C_{11}H_{18}N_{3}Q_{5}(H_{4}O) & -\\ -20 & W & C_{12}H_{28}N_{3}Q_{5} & -\\ +47 & W & C_{13}H_{28}N_{3}Q_{5}(0,5)H_{4}O & -\\ +12 & W & C_{14}H_{28}N_{3}Q_{5}(0,5)H_{4}O & -\\ +16 & H & C_{14}H_{48}N_{4}O_{5} & 5\\ +11 & H & C_{16}H_{18}N_{4}O_{5} & +\\ -15 & H & C_{16}H_{48}N_{4}O_{5} & +\\ +6 & M & C_{16}H_{58}N_{4}O_{5} & -\\ \end{array}$		
65 HNCH(CH ₂ OH)CH ₂ CH ₂ . L ₂ 66 HNCH(CH ₂ OHOH)C ₃ L, 67 HNCH(CH ₂ OHOH)C ₃ L, 68 HNCH(CH ₄ OH)CH ₂ CH ₄ OH ₄ 68 HNCH(CH ₄ OH)CH ₂ CH ₄ OH ₄ +1. 70 HNCH(CH ₆ OH)CH ₂ CH ₄ OH ₄ OH ₄ +1. 71 HNCH(CH ₂ OH)CH ₄ CH ₄ OH ₅ OH ₄ +1. 72 HNCH ₄ CH ₄ CH ₄ OH ₅	95 AC 237 228 W 98 M 188 190 M 95 M 160 185 72 AC 269 210 W 44 M 212 213 M 96 M 199 208 W 87 M 208 200 M-ET 74 M 208 200 W 85 M 168 480 M-ET 85 M 168 480 M-ET	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
74 HNCH,CH,	71 M 195–196 M	$= 17~M \qquad C_{10}H_{11}N_2O_1 \qquad \qquad + \qquad \qquad$		
$\begin{array}{cccc} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
5. Nichols (1986) "Synthesis and Evaluation of 2,3- Dihydrobenzofuran Analogues of the Hallucinogen 1-(2,5- Dimethoxy-4methylphenyl)-2-aminopropane: Drug Discrimination Studies in Rats" Vol. 29 (2): 302-304.				
From page 304 , parag difficult to explain in li (methylenedioxy)amph	ght of the fac	t that 2-methoxy-4,5- MDA-2) is active		
	B OCH	3		
and produces clear cen mg of the hydrochlorid		an oral dosage of 25		

5. The compound of claim 1, wherein R_2 is -H, and where R_3 and R_4 are mutually joined to form a group -CH ₂	From the application of interest's priority document DE 10 2020 123 793.6 (filed 11 September 2020):				
	From claim 1 : "1. 3,4-methylenedioxy-amphetamine peptide according to general formula I:				
	where R1 is selected from the group consisting of:				
	und NH ₂ NH				
	where R2 is selected from the group consisting of:				
	-H or -CH3. where R3 is selected from the group consisting of:				
	-CH3 or -CH2-R4 where R4 is selected from the group consisting of: -H, -OCH3, or R3-CH2-				
	1. US Priority Doc. No. 63/115,245 of US Pat. Doc. No. 17/518,846 "MDMA PRODRUGS TO ASSIST PSYCHOTHERAPY" (Priority doc filed 18 November 2020).				
	From claim 1 : "A compound comprising a prodrug including a psychoactive base substance attached to an amino acid."				
	From claim 3 : "The compound of claim 2, wherein the MDMA or MDMA-like substance is chosen from the group consisting of MDA MDAI mixed dopaminergic-serotonergic amphetamine and their N-alkylated analogs"				
	From claim 4 : "The compound of claim 1, wherein said amino acid is chosen from the group consisting of lysine, alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine."				

derivative, analog, or salt thereof. Exemplary amphetamines include, but are not limited to, amphetamine, methamphetamine, methylphenidate, p- methoxyamphetamine, methylenedioxyamphetamine, 2,5- dimethoxy-4-methylamphetamine, 2,4,5- trimethoxyamphetamine, and 3,4- methylenedioxymethamphetamine"
 From paragraph [0107]: "Each amino acid can be any one of the L- or D-enantiomers, preferably L-enantiomers, of the naturally occurring amino acids: alanine (Ala or A), arginine (Arg or R), asparagine (Asn or N), aspartic acid (Asp or D), cysteine (Cys or C), glycine (Gly or G), glutamic acid (Glu or E), glutamine (Gln or Q), histidine (His or H), isoleucine (Ile or I), leucine (Leu or L), lysine (Lys or K), methionine (Met or M), proline (Pro or P), phenylalanine (Phe or F), serine (Ser or S), tryptophan (Trp or W), threonine (Thr or T), tyrosine (Tyr or Y), and valine (Val or V)" MAZUR (1970) "Structure-taste relation of aspartic acid amides" J. Med. Chem. Vol 13(6): 1217-1221.

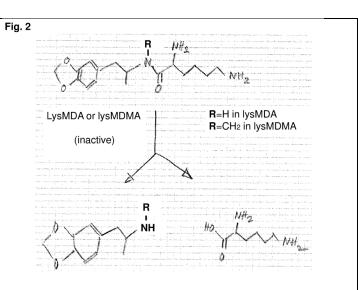
 Tab	le 2 (entry 64):					
	,		ars II			
No.	X		ACID AMIDES sp-X" Mp, "C	alt, deg	Formula	Taste
50 51	HNCH(CH ₃)CH ₂ C ₆ H ₅ ; L- HNCH(CH ₃)CH ₂ C ₆ H ₅ ; D-	88 AC 98 AC	197–198 W 222–225 E. W	- 12 M + 14 W	$C_{13}H_{15}N_2O_3$ $C_{13}H_{16}N_2O_3$	50 0
52 53	HNCH(CH ₄)CH ₂ C ₄ H ₅ ⁶ HNCH ₂ CH ₂ C ₄ H ₅	79 M 70 AC	164-166 A-W 212-214 P-W	+ 34 M - 15 W	$C_{14}H_{20}N_4O_3$ $C_{12}H_{16}N_4O_3$	-
54 55	$HNCH(C_2H_3)CH_2C_6H_3$ $HNC(CH_3)_2CH_2C_6H_3$	91 AC 96 AC	158~163 MET 159-161 W	+8 M ~16 M	$C_{14}H_{26}N_2O_3 + 0$, 25H ₂ O $C_{14}H_{26}N_2O_3$	5 20
56		91 M	223-224 M-W	-6 II	$C_{11}H_{16}N_2O_2$	10
	CH:			0.11	< 111111-120-1	
57 58	HNCHCHC ₆ H ₃ ; t- HNCH ₂ CH(CH ₃)C ₆ H,	95 M 70 AC	175-178 182-188 W	+5 M -20 W	$C_{14}H_{18}N_2O_8 \cdot H_2O$ $C_{12}H_{18}N_2O_4$	
59 60	N(CH ₂)CH(CH ₈)CH ₂ C ₆ H ₅ ; 1	84 M	164-166 185-187	+47 W +12 W	$C_{14}H_{20}N_2O_1 \cdot 0.5H_2O$	
61	$N(CH_3)CH(CH_3)CH_2C_6H_3$; D- HNCH(CH_3)CH_2CH_2C_6H_3	82 M 95 AC	190-196 MW	+16 H	$C_{14}H_{20}N_2O_2 \cdot 0.5H_2O$ $C_{14}H_{20}N_2O_3$	5
62 63	HNCH(CH ₄)CH ₂ OC ₆ H ₂ HNCH ₂ CH ₂ OC ₆ H ₂	68 M 85 AC	180~184 M=W 184-185 W	+11 H -13 H	C ₁₂ H ₁₈ N ₂ O ₄ C ₁₂ H ₁₆ N ₂ O ₄	10 +
64 65	$HNCH(CH_3)CH_2C_4H_3(OCH_2O)-3_74$ $HNCH(CH_2OH)CH_2C_4H_5;$ 1	95 M 95 AC	189–192 237–238 W	+6 M -26 AC	$C_{14}H_{18}N_2O_5$ $C_{13}H_{18}N_2O_4$	
66 67	HNCH(CH ₃)CH(OH)C ₈ H; HNCH(CH ₃)CH ₇ C ₆ H ₄ OH-4	98 M 95 M	188-190 M 160-185	+ 10 M + 5 W	$C_{11}H_1 N_2 O_4 \cdot 0.5 H_2 O_1 C_{10}H_1 N_2 O_4$	+
68 69	HNCH ₂ CH ₂ C ₄ H ₄ OH-4 HNCH(CH ₂ OH)CH ₂ C ₈ H ₄ OH-4; 1	72 AC 44 M	209~210 W 212~213 M	21 W 10 H	$C_{12}H_{18}N_2O_4$ $C_{18}H_{18}N_2O_4$	+
70	HNCH(CH ₃)CH ₂ C ₆ H ₄ NHSO ₂ CH ₁ -4; 1	96 M	199-208 W	+14.11	$C_{14}H_{41}N_8O_5S$	
71 72	$HNCH(CH_3)CH_2C_6H_4F-4$ $HNCH_2CH_2C_4H_4F-4$	87 M 74 M	203-209 M-ET 208-209 W	+9 H −6 M	$C_{12}H_{17}FN_2O_3$ $C_{12}H_{15}FN_2O_3$	20 5
73	HNCH(CH.)CH2	85 M	168-180 M-ET	+6 H	$C_{11}H_{16}N_2O_4{\cdot}0.333H_2O$	10
74	HNCH,CH, L	71 M	195-196 M	- 17 M	$\mathrm{C}_{10}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}_{1}$	+
75	HNCH/CH_/CH_	96 AC	203-205 M	- 22 M	$C_{45}H_{19}N_4O_3$	
76	HNCH(CH ₃)CH ₂ -e-C ₆ H ₁₁ ; 1	84 AC	184-185 M-W	- 19 M	$C_{13}H_{13}N_2O_3$	50
77 78	$HNCH(CH_0)CH_{2*}c_*C_6H_{11}; D=$ $HNCH_2CH_{2*}c_*C_8H_{11}$	60 M 94 AC	207-208 M-W 193-202 M-W	$^{+16}_{+7}$ M +7 AC	$C_{13}H_{24}N_2O_3$ $C_{13}H_{22}N_2O_3$	5 10
79 80	$N(CH_3)CH(CH_4)CH_{2^*}c^*C_6H_{11}$; 1 $N(CH_3)CH(CH_4)CH_{2^*}c^*C_6H_{11}$; 1	78 M 64 M	179–180 P–ET 194–196	- 14 W +1 W	CuH28N2O1+0.25H2O CuH28N2O2	
81 82	HN-e-C ₆ H ₁₁ HNCH(CH ₃)CH ₂ CH ₂ CH ₃	91 M 92 M	224–225 W 190–194 A W	+16 H +9 AC	$C_{10}H_{18}N_2O_3$ $C_5H_{18}N_2O_4 \cdot 0.5H_2O$	 0
83	HN(CH ₂) ₃ CH(CH ₄)CH ₃	89 M	222223 MW		$C_{10}H_{20}N_2O_3$	0
84 85	$HNCH(CH_3)CH_2CH(CH_3)CH_3; 1_{*}$ $HNCH(CH_3)CH_2CH(CH_3)CH_3; 0_{*}$	91 AC 92 AC	166–168 W 201–202 W	−17 M +9 M	$C_{10}H_{20}N_2O_3 \cdot 0$, $5H_2O$ $C_{10}H_{20}N_2O_3 \cdot 0$, $25H_2O$	
86 87	$HNCH(C_2H_3)CH_2CH_2CH_3$ $HN(CH_2)_3CH_3$	93 M 88 M	196-200 AW 200-201 W	+12 AC +9 AC	C ₁₈ H ₂₈ N ₂ O ₃ , H ₂ O C ₁₈ H ₂₈ N ₂ O ₃ , 0, 25H ₂ O	
88 89	HNCH(CH ₄) ₄ CH ₄ HN(CH ₄) ₆ CH ₄	98 M 89 M	188 -193 A -W 200-201 W	+11 AC +8 AC	$C_{10}H_{20}N_2O_3 \cdot 0.5H_2O$ $C_{11}H_{22}N_2O_3 \cdot 0.25H_2O$	30 +
90 91	HNCH(CH ₃)(CH ₂) ₄ CH ₂	95 M	190~194	± 7 AC	$C_{11}H_{22}N_2O_3$	20 +
92	$HNCH(CH_3)CH_2CH(CH_3)CH_2CH_2$ $HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3$	94 M 94 M	162–166 W 184–188 A–W	-2 M +9 AC	$C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$ $C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$	50
93 94	$HNCH(C_2H_5)(CH_2)_3CH_3$ $HNCH(CH_3)(CH_2)_4CH_3;$ 1	98 M 94 M	190–195 187–189 W	+9 AC 5 M	$C_{11}H_{22}N_2O_3 \cdot 0$, 5H ₂ O $C_{12}H_{22}N_2O_3$, H ₂ O	4: 50
95 96	$HNCH(CH_3)(CH_2)_4CH_3; L^d$ $HNCH(CH_3)(CH_2)_4CH_3; D$	97 M 96 M	213-214 M-W 217-218 M-W	-5 M +5 M	$C_{11}H_{22}N_2O_3 + 05H_2O_3$ $C_{11}H_{22}N_2O_3$	
97 98	$HNCH(CH_3)(CH_2)_4CH_3; D^d$ $HNCH(CH_2)CH_2CH_2CH(CH_2)CH_3; L-$	97 M 84 M	189–192 W 187–190 W	$^{+6}_{+23}$ H	$C_{15}H_{22}N_2O_3$ $C_{13}H_{22}N_2O_3 + 0.5H_2O$	100
99 100	$HNCH(CH_8)CH_2CH_2CH(CH_8)CH_8; \ L^d$	99 M	215-216 M-W	+2 M -3 M	C_1 ; H_2 ; N_2 O ₃	0
101	$HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3; D-HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3; D^4$	96 M 91 M	210–213 M–W 192–195 W	-26 H	$C_{11}H_{12}N_2O_3 \cdot 0.5H_2O$ $C_{11}H_{12}N_2O_3 \cdot 0.25H_2O$	+
102 103	HNCH(CH ₃)CH ₂ CH ₂ OCH ₂ CH ₃ HNCH(CH ₂)(CH ₂) ₃ CH ₃	77 M 85 M	166-170 M-ET 180-190	+3 M -8 M	$C_{10}H_{20}N_2O_4 \cdot 0.25H_2O \\ C_{12}H_{21}N_2O_3 \cdot 0.5H_2O$	10 10
⁴ See T ⁴ The ami	able I for abbreviations and explanations. de was derived from p-Asp. * All compound	^b The amies were analy	de was derived from zed for C, H, N.	i t-Glu. ≃Tl	he amide was deri ve d from	ntsAsp.
plac	atch (2016) "Locor e conditioning effer macology, Vol 27 (cts of	f MDAI i		,	
(ME meth MD stim psyc teste subs train intra	n abstract: "5,6-M DAI) has become a nylenedioxymethan AI is known to pro- nulus effects, but it chostimulant or hall ad for locomotor sti equently for discrim- ted to discriminate aperitoneally), meth- presitoneally, +MI	comr nphet oduc is no lucino mula ninat cocai	non subs tamine (M e MDMA t known ogen-like nt effects tive stimu ne (10 m hetamine	titute MDM A-like wheth e effec s in m alus e ag/kg, e (1 mg	for (±)-3,4- A) in Ecstas e discrimina her MDAI h ets. MDAI w ice and ffects in rats g/kg,	as 7as
	peritoneally), ±MI -)-2,5-dimethoxy-4		· –	-	-	• /

	(0.5 mg/kg, intraperitoneally) from salineMDAI fully substituted for the discriminative stimulus effects of MDMA (2.5 mg/kg), (-)-2,5-dimethoxy-4- methylamphetamine hydrochloride (5 mg/kg), and cocaine (7.5 mg/kg), but produced only 73% methamphetamine- appropriate responding at a dose that suppressed responding (7.5 mg/kg). MDAI produced tremors at 10 mg/kg in one methamphetamine-trained rat. MDAI produced conditioned place preference from 0.3 to 10 mg/kg. The effects of MDAI on locomotor activity and drug discrimination were similar to those produced by MDMA, having both psychostimulant-like and hallucinogen-like effects ; thus, MDAI may have similar abuse potential as MDMA.
6. The compound of claim 1, wherein R ₁ is selected from: 4 - 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +	 2. U.S. Pat. App. Doc. No. 2009/0131335 "ABUSE- RESISTANT AMPHETAMINE PRODRUGS" (Published 21 May 2009). From claim 1: "A method, in a subject, of preventing euphoria due to an amphetamine or a pharmaceutically effective salt thereof, said method comprising orally administering to said subject a prodrug or a salt thereof
	said prodrug comprising said amphetamine covalently bonded to a single amino acid or to a peptide comprising from 2 to 10 amino acids, whereby the blood levels of said amphetamine achieve a therapeutically effect level but said blood levels do not result in a euphoric effect." From paragraph [0096] : "The amphetamine, A, can be
	any of the sympathomimetic phenethylamine derivatives which have central nervous system stimulant activity such as amphetamine, or any derivative, analog, or salt thereof. Exemplary amphetamines include, but are not limited to, amphetamine, methamphetamine, methylphenidate, p- methoxyamphetamine, methylenedioxyamphetamine , 2,5-dimethoxy-4-methylamphetamine, 2,4,5- trimethoxyamphetamine, and 3,4- methylenedioxymethamphetamine "
	From paragraph [0107]: "Each amino acid can be any one of the L- or D-enantiomers, preferably L-enantiomers, of the naturally occurring amino acids: alanine (Ala or A), arginine (Arg or R), asparagine (Asn or N), aspartic acid (Asp or D), cysteine (Cys or C), glycine (Gly or G), glutamic acid (Glu or E) , glutamine (Gln or Q), histidine (His or H), isoleucine (Ile or I), leucine (Leu or L), lysine (Lys or K), methionine (Met or M), proline (Pro or P), phenylalanine (Phe or F), serine (Ser or S), tryptophan (Trp or W), threonine (Thr or T), tyrosine (Tyr or Y) , and valine (Val or V)"

3. MAZUR (1970) "Structure-taste relation of aspartic acid amides" J. Med. Chem. Vol 13(6): 1217-1221.

Table 2 (entry 64):

$\begin{array}{c} \text{CHCdH}_{1:} \ \text{tr} \\ \text{CHCdH}_{2:} \ \text{tr} \\ \text{R_{1}CdH}_{3:} \ \text{tr} \\ \text{CdH}_{3:} \ \text{CHCdH}_{3:} \ \text{tr} \\ \text{R_{1}CdH}_{3:} \ \text{CHC}_{3:} \ \text{tr} \\ \text{R_{1}CdH}_{3:} \ \text{CH}_{3:} \ \text{tr} \\ \text{R_{1}CdH}_{3:} \ \text{CH}_{3:} \ \text{tr} \\ \text{R_{1}CdH}_{3:} \ \text{tr} \\ \text{R_{1}CdH}_{3:} \ \text{tr} \\ \text{R_{1}CdH}_{3:} \ \text{tr} \\ \text{R_{1}CdH}_{3:} \ \text{tr} \\ \text{CH}_{2:} \ \text{CdH}_{3:} \ \text{tr} \\ \text{CH}_{2:} \ \text{CdH}_{3:} \ \text{tr} \\ \text{CdH}_{3:} \ \text{CdH}_{$	88 AC 98 AC 98 AC 97 M 70 M 90 AC 91 AC 91 M 95 M 90 AC 91 M 95 M 95 M 95 M 95 M 95 M 95 M 95 M 98 M	197–198. W 197–198. W 222–225. F. W 164–166 A. W 212–214 PW 153–163. M. ET 150–164. W 223–224. M. W 175–178 182–188. W 164–166 183–187 180–196. MW 184–185. W 184–185. W 199–208. W 203–209. M. ET 203–209. M. ET 195–196. M	$\begin{array}{c} -12 \ \mathrm{M} \\ +14 \ \mathrm{W} \\ +34 \ \mathrm{M} \\ -15 \ \mathrm{M} \\ +8 \ \mathrm{M} \\ -16 \ \mathrm{M} \\ -16 \ \mathrm{M} \\ -6 \ \mathrm{H} \\ -6 \ \mathrm{H} \\ +5 \ \mathrm{M} \\ +10 \ \mathrm{M} \\ +10 \ \mathrm{H} \\ +10 \ \mathrm{M} \\ +5 \ \mathrm{M} \\ +20 \ \mathrm{W} \\ +10 \ \mathrm{M} \\ +5 \ \mathrm{M} \\ -26 \ \mathrm{M} \\ +10 \ \mathrm{M} \\ +10 \ \mathrm{H} \\ -11 \ \mathrm{M} \\ +6 \ \mathrm{M} \\ +6 \ \mathrm{H} \\ -17 \ \mathrm{M} \\ -10 \ \mathrm{M} \ \mathrm{M} \\ -10 \ \mathrm{M} \ \mathrm{M} \\ -10 \ \mathrm{M} \ \mathrm{M} \ \mathrm{M} \\ -10 \ \mathrm{M} \$	C.J.I., S.O. C.J.I., S.O. C.J.J., S.O. C.J.,
$\begin{array}{c} \text{CH-CH}_{4}^{\text{CH-CH}_{4}} \\ \text{d}_{5}^{\text{CH-CH}_{4}} \\ \text{CH-CH}_{4}^{\text{CH-CH}_{5}} \\ \text{d}_{5}^{\text{CH}_{4}} \\ \text{d}_{6}^{\text{CH}_{4}} \\ \text{d}_{6}^{\text{CH}_{6}} $	79 M 70 AC 91 AC 91 AC 91 M 95 M 70 AC 95 M 70 AC 82 M 85 AC 98 M 85 AC 98 M 85 AC 98 M 71 AC 74 M 85 M 74 M 75 M 76 AC 70 AC	104 106 A.W 212 214 P.W 212 214 P.W 158-163 M.ET 159-161 W 223-224 M.W 175-178 182-188 W 164-166 165-187 180-186 M.W 185-187 180-186 M.W 184-185 W 184-185 W 184-185 W 184-	$\begin{array}{c} +34 \ {\rm M} \\ -15 \ {\rm M} \\ -16 \ {\rm M} \\ -16 \ {\rm H} \\ -6 \ {\rm H} \\ -6 \ {\rm H} \\ +5 \ {\rm M} \\ -20 \ {\rm W} \\ +20 \ {\rm W} \\ +20 \ {\rm W} \\ +20 \ {\rm W} \\ +10 \ {\rm H} \\ +110 \ {\rm H} \\ +110 \ {\rm H} \\ +10 \ {\rm M} \\ -20 \ {\rm K} \\ -10 \ {\rm H} \\ +10 \ {\rm H} \\ -0 \ {\rm H} \\ +10 \ {\rm H} \\ +10 \ {\rm H} \\ +0 \ {\rm H} \\ $	C.J.E.S.O. C.J.L.S.O.
$\begin{array}{c} \text{H}_{2} & \\ \text{CHC, II, } \\ \text{H}_{2}\text{CH}_{1} & \\ \text{H}_{1}\text{CH}_{1} & \\ \text{H}_{1}\text{CH}_{1} & \\ \text{H}_{1}\text{CH}_{2}\text{CH}_{1} & \\ \text{H}_{1}\text{CH}_{2}\text{CH}_{1} & \\ \text{H}_{1}\text{CH}_{2}\text{CH}_{2} & \\ \text{H}_{2}\text{CH}_{2}\text{CH}_{2} & \\ \text{H}_{2}\text{CH}_{2}\text{CH}_{2} & \\ \text{H}_{2}\text{CH}_{2}\text{CH}_{2} & \\ \text{H}_{2}\text{CH}_{2}\text{CH}_{2} & \\ \text{H}_{2}\text{CH}_{2}\text{CH}_{1} & \\ \text{H}_{2}\text{CH}_{2}\text{CH}_{2} & \\ \text{H}_{2}\text{CH}_{2}\text{CH}_{1} & \\ \text{H}_{2}\text{CH}_{2}\text{CH}_{2} & \\ \text{H}_{2}\text{CH}_{2}\text{CH}_{2} & \\ \text{H}_{2}\text{CH}_{2}\text{CH}_{2} & \\ \text{H}_{2}\text{CH}_{2}\text{CH}_{2} & \\ \text{H}_{2}\text{CH}_{2} & \\ \text{CH}_{2}\text{CH}_{2} & \\ \text{CH}_{2}\text{CH}_{2} & \\ \text{CH}_{2} & \\ \text{CH}_{2}\text{CH}_{2} & \\ \text{CH}_{2} & \\ \ \text{CH}_{2} & \\ \text{CH}_{2} & \\ \ \text$	70 AC 91 AC 96 AC 91 M 95 M 70 AC 84 M 82 M 82 M 82 M 82 M 95 M 95 M 95 M 95 M 95 M 95 M 95 M 95	212 214 P-W 158-163 M. ET 159-161 W 223-224 M. W 223-224 M. W 175-178 182-188 W 164-186 185-187 180-196 MW 180-184 M. W 180-185 W 184-185 W 184-185 W 184-185 W 184-185 W 185-190 M 206-210 W 212-213 M 160-185 206-210 W 212-213 M 106-185 W 206-200 W 203-200 M. ET 208-200 W	$\begin{array}{c} -15 \ \mathrm{W} \\ +8 \ \mathrm{M} \\ -16 \ \mathrm{M} \\ -6 \ \mathrm{H} \\ +5 \ \mathrm{M} \\ +5 \ \mathrm{M} \\ +47 \ \mathrm{W} \\ +47 \ \mathrm{W} \\ +10 \ \mathrm{H} \\ +11 \ \mathrm{H} \\ +11 \ \mathrm{H} \\ +11 \ \mathrm{H} \\ +10 \ \mathrm{M} \\ +26 \ \mathrm{M} \\ -21 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ +10 \ \mathrm{H} \\ +6 \ \mathrm{H} \\ +6 \ \mathrm{H} \end{array}$	C.,H.,N.M. C.,H.,N.M., O., 2514,0 C.,H.,N.M.
$\begin{array}{c} CH_{4}CAB, \\ H_{4}CAB, \\ H_{4}CAB, \\ H_{5}CAB, \\ H_{5}CAB, \\ H_{5}CB, CAB, \\ H_{5}CB, CAB, \\ DH_{6}CB, CAB, \\ DH_{6}CB, CAB, \\ DH_{6}CB, \\ CAB, \\ DH_{6}CB, \\ CAB, \\ DH_{6}CB, \\ DH$	91 AC 96 AC 91 M 95 M 70 AC 74 M 82 M 85 AC 95 AC 95 M 75 AC 95 M 72 AC 95 M 72 AC 44 M 85 M 74 M 85 M 74 M 85 M 74 M 85 M	159 161 W 223-224 M-W 175-178 182-188 W 164-166 185-187 180-196 M-W 180-196 M-W 180-185 W 184-185 W 184-185 W 185-190 M 185-190 M 267-238 W 267-238 W 267-245 W 269-240 W 212-245 M 269-240 W 203-200 W 108-180 M ET	$\begin{array}{c} +8 \ \mathrm{M} \\ -16 \ \mathrm{M} \\ -6 \ \mathrm{H} \\ +5 \ \mathrm{M} \\ -20 \ \mathrm{W} \\ +12 \ \mathrm{W} \\ +110 \ \mathrm{H} \\ -10 \ \mathrm{H} \\ -10 \ \mathrm{H} \\ -10 \ \mathrm{H} \\ -10 \ \mathrm{M} \\ +10 \ \mathrm{M} \\ -26 \ \mathrm{AC} \\ -21 \ \mathrm{W} \\ -10 \ \mathrm{H} \\ +10 \ \mathrm{H} \\ -10 \ \mathrm{H} \\ +10 \ \mathrm{H} \\ -10 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ -10 \ \mathrm{H} \\ -10 \ \mathrm{H} \\ +16 \ \mathrm{H} \\ +16 \ \mathrm{H} \end{array}$	C.J.H., SAO, -0. 2511,0 C.J.H., SAO, C.J.H., SAO, C.J.H., SAO, C.J.H., SAO, C.J.H., SAO, -0. 314,0 C.J.H., SAO, -0. 314,0 C.J.H., SAO, -0. 314,0 C.J.H., SAO, C.J.H., SAO, C.J
$\begin{array}{c} \\ H_{11} & t_{1} \\ H_{11} CH_{11} \\ H_{11} CH_{12} CH_{11} \\ H_{11} CH_{12} CH_{11} \\ H_{11} CH_{12} CH_{11} \\ H_{11} CH_{12} CH_{11} \\ H_{12} CH_{22} CH_{12} \\ H_{12} CH_{22} CH_{21} \\ H_{12} CH_{22} \\ H_{22} CH_{21} \\ H_{12} CH_{22} \\ H_{22} CH_{21} \\ H_{22} \\ CH_{22} CH_{21} \\ H_{22} \\ CH_{22} \\ CH_{$	91 M 95 M 70 AC 84 M 82 M 95 AC 95 M 95 M 95 M 72 AC 44 M 96 M 14 96 M 74 M 85 M 71 M 96 AC	223-224 M W 175-178 182-188 W 185-187 190-196 M-W 183-187 190-196 M-W 184-185 W 184-185 W 184-185 W 184-185 W 184-185 W	$\begin{array}{c} -6 \ \mathrm{II} \\ +5 \ \mathrm{M} \\ -20 \ \mathrm{W} \\ +12 \ \mathrm{W} \\ +12 \ \mathrm{W} \\ +12 \ \mathrm{W} \\ +11 \ \mathrm{H} \\ -13 \ \mathrm{H} \\ -26 \ \mathrm{AC} \\ +10 \ \mathrm{M} \\ +5 \ \mathrm{W} \\ -21 \ \mathrm{W} \\ -21 \ \mathrm{W} \\ -10 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ +6 \ \mathrm{H} \end{array}$	$\begin{split} C_{13}H_{16}N_{3}O_{2} \\ C_{13}H_{16}N_{3}O_{4} \\ C_{13}H_{18}N_{3}O_{4}O_{5}H_{4}O_{4}O_{5}H_{3}O_{1}O_{5}H_{3}O_{1}O_{5}H_{3}O_{1}O_{5}H_{3}O_{2}O_{5}H_{3}O_{1}O_{5}H_{3}O_{2}O_{5}H_{3}O_{2}O_{5}H_{3}O_{2}O_{5}H_{3}O_{2}O_{5}H_{3}O_{1}O_{5}H_{3}O_{2}O_{5}H_{3}O_{1}O_{5}H_{3}O_{1}O_{5}H_{3}O_{1}O_{5}H_{3}O_{1}O_{5}H_{3}O_{1}O_{5}H_{3}O_{1}O_{5}H_{3}O_{1}O_{5}H_{3}O_{1}O_{5}H_{3}O_{1}O_{5}H_{3}O_{2}O_{5}H_{3}O_{5}O_{5}H_{3}O_{5}O_{5}H_{3}O_{5}O_{5}H_{3}O_{5}O_{5}H_{5}O_{5}O_{5}H_{5}O_{5}O_{5}H_{5}O_{5}O_{5}O_{5}H_{5}O_{5}O_{5}O_{5}H_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O_{5}O$
$ \begin{array}{c} H_{0}(CH, H_{1}, L_{2}, H_{2}, H_{2}, CH, CH_{3}, L_{4}, L_{2}, H_{3}, CH, CH_{4}, L_{3}, L_{4}, CH, CH_{4}, L_{4}, L_{4}, CH_{4}, CH_{4}, CH_{4}, CH_{4}, CH_{4}, CH_{4}, CH_{4}, CH_{4}, L_{4}, CH_{4}, CH_{4}, L_{4}, CH_{4}, CH_{4}, L_{4}, CH_{4}, CH_{4}$	95 M 70 AC 84 M 82 M 95 AC 88 M 95 M 95 M 95 M 95 M 72 AC 72 AC 74 M 85 M 74 M 85 M 74 M 86 AC	175-178 172-188 W 164-166 185-187 180-196 M-W 180-184 M W 184-185 W 184-185 W 184-185 W 185-190 M 160-185 269-210 W 212-213 M 209-210 W 209-210 W 209-200 W 203-200 M ET 208-200 W	$\begin{array}{c} +5 \ \mathrm{M} \\ -20 \ \mathrm{W} \\ +47 \ \mathrm{W} \\ +110 \ \mathrm{H} \\ +110 \ \mathrm{H} \\ +111 \ \mathrm{H} \\ +10 \ \mathrm{M} \\ +6 \ \mathrm{M} \\ +5 \ \mathrm{W} \\ +50 \ \mathrm{W} \\ +10 \ \mathrm{M} \\ +10 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ +16 \ \mathrm{H} \\ +16 \ \mathrm{H} \end{array}$	C ₀ H ₂ N ₂ 0, H ₄ O C ₀ H ₂ N ₂ 0, C ₃ H ₄ O C ₄ H ₂ N ₂ 0, 0.3H ₄ O C ₄ H ₂ N ₂ 0, 0.3H ₄ O C ₄ H ₂ N ₂ 0, C ₄ H ₄ N ₂ O, C ₄ H ₂ N ₂ O, C ₄ H ₂ N ₂ O, C ₄ H ₂ N ₂ O, 0.3H ₄ O C ₄ H ₂ N ₂ O, C ₄ H ₂ N ₂ O,
$ \begin{array}{c} H_{0}(CH, H_{1}, L_{2}, H_{2}, H_{2}, CH, CH_{3}, L_{4}, L_{2}, H_{3}, CH, CH_{4}, L_{3}, L_{4}, CH, CH_{4}, L_{4}, L_{4}, CH_{4}, CH_{4}, CH_{4}, CH_{4}, CH_{4}, CH_{4}, CH_{4}, CH_{4}, L_{4}, CH_{4}, CH_{4}, L_{4}, CH_{4}, CH_{4}, L_{4}, CH_{4}, CH_{4}$	70 AC 84 M 82 M 95 AC 96 M 85 AC 95 AC 95 AC 95 M 95 M 72 AC 44 M 87 M 74 M 85 M 71 M 96 AC	182-188 W 164-166 183-187 183-187 190-196 180-184 M 180-196 184-185 184-185 W 184-185 W 184-185 W 184-185 W 184-185 W 184-185 W 184-182 W 267 288 212 213 190+208 W 208-200 W 208-200 W 208-200 W 168-180 M 168-180 M 168-180 M 168-180 M 168-180 M 168-180 M	$\begin{array}{c} -20 \ \mathrm{W} \\ +47 \ \mathrm{W} \\ +12 \ \mathrm{W} \\ +11 \ \mathrm{H} \\ +11 \ \mathrm{H} \\ +11 \ \mathrm{H} \\ +11 \ \mathrm{H} \\ -26 \ \mathrm{AC} \\ +10 \ \mathrm{M} \\ +5 \ \mathrm{M} \\ -21 \ \mathrm{W} \\ -10 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ +16 \ \mathrm{H} \\ +6 \ \mathrm{M} \\ +6 \ \mathrm{H} \end{array}$	C.J.H.NYA C.H.S.YA-0.5HAO C.J.H.S.YA-0.5HAO C.J.H.S.YA-0.5HAO C.J.H.SAO
$\begin{array}{c} H_{1}(CH,CH_{1}; \ \nu \\ H_{2}(CH,CH_{2}; \ \nu \\ H_{2}(CH,CH_{3}; \ \nu \\ H_{3}(CH,CH_{3}; \ \nu \\ H_{3}(CH,CH,CH_{3}; \ \nu \\ H_{3}(CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,CH,C$	 84 M 82 M 95 AC 98 M 95 M 98 M 98 M 98 M 98 M 96 M 72 AC 96 M 74 M 74 M 85 M 71 M 96 AC 	164-166 185-187 180-196 M-W 180-186 M-W 184-185 W 184-185 W 267 238 W 287 238 W 185-190 M 267 238 W 287 249 M 289 240 M 212 245 M 208 240 W 203-209 M 208 200 W 108 180 M ET	$\begin{array}{c} +47 \ \mathrm{W} \\ +12 \ \mathrm{W} \\ +16 \ \mathrm{H} \\ +11 \ \mathrm{H} \\ -13 \ \mathrm{H} \\ +6 \ \mathrm{M} \\ +26 \ \mathrm{AC} \\ +10 \ \mathrm{M} \\ +5 \ \mathrm{W} \\ -21 \ \mathrm{W} \\ -10 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ +9 \ \mathrm{H} \\ +6 \ \mathrm{H} \end{array}$	C ₀ H ₀ X(b ₂ , 0, 3H ₂ O C ₀ H ₂ X(b ₂ , 0, 3H ₂ O C ₀ H ₂ X(b ₂ , 0, 3H ₂ O C ₀ H ₁ X(b) C ₀ H ₂ X(b)
$\begin{array}{c} H_{1}(CH_{1}; \ \mbox{${\rm P-R}$CH}; \mbox{${\rm P-R}$CH}; \mbox{${\rm P-R}$CH}; \mbox$	\$2 M 95 AC 98 M \$5 AC 95 AC 98 M 72 AC 98 M 72 AC 94 M 74 M \$7 M 74 M \$5 M 71 M	185-187 190-196 M-W 180-184 M W 184-185 W 189-192 237-238 W 188-190 M 188-190 M 212-213 M 199-208 W 203-200 M-ET 208-200 W 168-180 M ET	$\begin{array}{c} +12 \ \mathrm{W} \\ +16 \ \mathrm{H} \\ +11 \ \mathrm{H} \\ -13 \ \mathrm{H} \\ \hline +6 \ \mathrm{M} \\ -26 \ \mathrm{AC} \\ +10 \ \mathrm{M} \\ +5 \ \mathrm{W} \\ -21 \ \mathrm{W} \\ -10 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ -6 \ \mathrm{M} \\ +6 \ \mathrm{H} \end{array}$	C.H.B.NO ₂ -0.3H ₂ O C.H.B.NO ₂ C.H.B.NO ₂ C.H.B.NO ₂ C.H.NO ₂ C.H.NO ₂ -0.3H ₂ O C.H.NO ₂ -0.3H ₂ O C.H.SNO ₂ -0.3H ₂ O C.H.SNO ₂ -0.3H ₂ O
$\begin{array}{c} \text{BrcHcRcH}_{CHC}, \text{BrcHcCH}_{CH}, \\ \text{CH}_{CH}, \\ \text{CH}_{CHC}, \text{BrcHcH}_{CHC}, \text{brcHcH}_{CHC}, \\ \text{BrcHcCH}_{CHC}, \text{brcHcH}_{CHC}, \\ \text{BrcHcCH}_{CHC}, \text{BrcHcH}_{HC}, \\ \text{BrcHcCH}_{CHC}, \text{BrcHcH}_{HC}, \\ \text{BrcHcCH}_{CHC}, \\ \text{BrcHcH}_{CHC}, \\ \text{BrcHcH}_{CHC}, \\ \text{BrcHc}, \\ \\ \text{BrcHc}, \\ \text{BrcHc}, \\ \\ \text{BrcHc}, \\ \text{BrcHc}, \\ \\ \\ \text{BrcHc}, \\ \\ \\ \text{BrcHc}, \\ \\ \\ \\ \text{BrcHc}, \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	95 AC 68 M 85 AC 95 M 95 M 95 M 95 M 72 AC 44 M 87 M 74 M 85 M 74 M 85 M 71 M	190-196 M-W 180-184 M W 184-185 W 184-185 W 184-185 W 185-190 M 185-190 M 160-185 269-210 W 212-213 M 199-208 W 203-200 M-ET 208-200 W 168-180 M ET	$\begin{array}{c} +16 \ \mathrm{H} \\ +11 \ \mathrm{H} \\ -13 \ \mathrm{H} \\ +6 \ \mathrm{M} \\ -26 \ \mathrm{AC} \\ +10 \ \mathrm{M} \\ +5 \ \mathrm{W} \\ -21 \ \mathrm{W} \\ -21 \ \mathrm{W} \\ -10 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ +9 \ \mathrm{H} \\ -6 \ \mathrm{M} \\ +6 \ \mathrm{H} \end{array}$	C.J.H.SA): C.J.H.SA):
$\begin{array}{c} \text{BROCH.} \\ \text{CH.} \\ $	68 M 85 AC 95 M 95 AC 98 M 95 AC 98 M 72 AC 74 M 74 M 85 M 74 M 85 M 71 M 96 AC	180-184 M W 184-185 W 184-192 237 238 W 180-192 237 238 W 160-185 206-210 W 212-213 M 199-208 W 238-209 M-ET 208-200 W 168-180 M ET	$\begin{array}{c} +11\ \mathrm{H} \\ -13\ \mathrm{H} \\ -6\ \mathrm{M} \\ -26\ \mathrm{AC} \\ +10\ \mathrm{M} \\ +5\ \mathrm{W} \\ -21\ \mathrm{W} \\ -21\ \mathrm{W} \\ +10\ \mathrm{H} \\ +14\ \mathrm{H} \\ +9\ \mathrm{H} \\ -6\ \mathrm{M} \\ +6\ \mathrm{H} \end{array}$	$\begin{array}{c} C_{n}H_{5}N_{5}\Omega_{1} \\ C_{1}H_{n}N_{5}\Omega_{1} \\ C_{1}H_{n}N_{5}\Omega_{2} \\ C_{n}H_{n}N_{5}\Omega_{2} \\ C_{n}H_{n}N_{5}\Omega_{2} \\ C_{n}H_{n}N_{5}\Omega_{2} \\ C_{1}H_{n}N_{5}\Omega_{3} \\ C_{1}H_{n}N_{5}\Omega_{4} \\ C_{2}H_{n}N_{5}\Omega_{4} \\ C_{n}H_{n}N_{5}\Omega_{5} \\ C_{n}H_{n}N_{5}\Omega_{5} \\ C_{n}H_{n}FN_{2}\Omega_{1} \\ C_{n}H_{n}FN_{3}\Omega_{5} \end{array}$
C.H. CH.C.H.(OCH_O IS, I H.C.H.C.H.: 1- CH.C.H.O.H.C.H.: 1- CH.C.H.O.H.4 H.C.H.C.H.O.H.4 H.C.H.C.H.O.H.4 H.C.H.C.H.O.H.4 H.C.H.C.H.NBO,C.H., 4: D.H.C.H.C.H.F.4 \square CH.c.C.H.H.: 1- CH.c.C.H.H.: 1- CH.c.C.H.H.: 1-	55 AC 95 M 95 AC 98 M 95 M 72 AC 44 M 74 M 74 M 85 M 71 M 96 AC	184-185 W 184-192 237-238 W 188-190 M 160-185 209-210 W 209-210 W 203-209 M-ET 208-200 W 168-180 M ET	$\begin{array}{c} -13 \ \mathrm{H} \\ +6 \ \mathrm{M} \\ -26 \ \mathrm{AC} \\ +10 \ \mathrm{M} \\ +5 \ \mathrm{W} \\ -21 \ \mathrm{W} \\ -10 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ +9 \ \mathrm{H} \\ -6 \ \mathrm{M} \\ +6 \ \mathrm{H} \end{array}$	$\begin{array}{c} C_{11}H_{18}N_{1}O_{1} \\ \hline \\ C_{14}H_{18}N_{2}O_{1} \\ C_{14}H_{18}N_{2}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1}O_{1$
$\begin{array}{c} \text{Hechkochorsa}\\ \text{Hichkochorsa}\\ \text{Hichkochorsa}\\$	95 M 95 AC 98 M 95 M 72 AC 44 M 87 M 74 M 85 M 71 M 96 AC	189-192 237-238 W 188-190 M 160-185 209-210 W 212-213 M 199-208 W 203-209 M-ET 208-209 W 168-480 M ET	+6 M -26 AC +10 M +5 W -21 W -10 H +14 H +9 H -6 M +6 H	$\begin{array}{c} C_{11}H_{18}N_{1}O_{1}\\ C_{21}H_{18}N_{2}O_{1}\\ C_{31}H_{18}N_{2}O_{1}O_{1}O_{1}O_{1}\\ C_{31}H_{18}N_{2}O_{1}\\ C_{32}H_{18}N_{2}O_{1}\\ C_{32}H_{18}N_{2}O_{2}\\ C_{31}H_{18}N_{2}O_{2}\\ C_{32}H_{17}FN_{2}O_{1}\\ C_{32}H_{17}FN_{2}O_{1}\\ C_{32}H_{17}FN_{2}O_{1}\\ \end{array}$
$\begin{array}{c} \mathbb{H}(\Theta \mathrm{H}(\mathrm{GH}_{1}) \\ \mathbb{C}\mathrm{H}_{\mathcal{C}}(\mathrm{H}(\mathrm{OH}) \\ \mathrm{H}(\mathrm{C}\mathrm{H}_{\mathcal{C}}(\mathrm{H}, \mathrm{OH}) \\ \mathrm{H}(\mathrm{C}\mathrm{H}_{\mathcal{C}}(\mathrm{H}, \mathrm{OH}) \\ \mathrm{H}(\mathrm{C}\mathrm{H}_{\mathcal{C}}(\mathrm{H}, \mathrm{OH}) \\ \mathrm{H}(\mathrm{C}\mathrm{H}_{\mathcal{C}}(\mathrm{H}, \mathrm{OH}) \\ \mathrm{H}_{\mathcal{C}}(\mathrm{H}, \mathrm{F}\mathrm{H}) \\ \mathrm{H}_{\mathcal{C}}(\mathrm{H}, \mathrm{F}) \\ \mathrm{H}_{$	98 M 95 M 72 AC 44 M 96 M 87 M 74 M 85 M 71 M 96 AC	188, 190 M 160-185 209-210 W 212-213 M 199-208 W 203-209 M-ET 208-206 W 168-180 M ET	$\begin{array}{c} +10 \ \mathrm{M} \\ +5 \ \mathrm{W} \\ -21 \ \mathrm{W} \\ -10 \ \mathrm{H} \\ +14 \ \mathrm{H} \\ +9 \ \mathrm{H} \\ -6 \ \mathrm{M} \\ +6 \ \mathrm{H} \end{array}$	$\begin{array}{l} C_{12}H_{48}N_{4}O_{4}\!\cdot\!0.5H_{4}O\\ C_{13}H_{48}N_{4}O_{4}\\ C_{13}H_{48}N_{4}O_{4}\\ C_{13}H_{48}N_{5}O_{4}\\ C_{14}H_{48}N_{5}O_{5}\\ C_{14}H_{48}N_{5}O_{5}S\\ C_{15}H_{47}N_{5}O_{5}\\ C_{17}H_{45}N_{5}O_{4}\\ C_{77}H_{45}N_{5}O_{5}\\ \end{array}$
$\begin{array}{c} \mathrm{BLCHLOH}_{4}\\ \mathrm{H}_{1}\mathrm{OH}_{4}\\ \mathrm{H}_{1}\mathrm{OH}_{4}\mathrm{H}_{1}\mathrm{OH}_{5}\mathrm{H}_{6}\mathrm{OH}_{4}\mathrm{H}_{1}\mathrm{I}_{2}\mathrm{H}_{2}\mathrm{OH}_{4}\mathrm{H}_{1}\mathrm{H}_{1}\mathrm{H}_{2}\mathrm{H}_{2}\mathrm{OH}_{4}\mathrm{H}_{1}\mathrm{H}_{1}\mathrm{H}_{2}\mathrm{H}_{4}\mathrm{H}_{1}\mathrm{H}_{1}\mathrm{H}_{4}\mathrm{H}_{4}\mathrm{H}_{1}\mathrm{H}_{4$	95 M 72 AC 44 M 87 M 74 M 85 M 71 M 96 AC	160–185 209–210 W 212–213 M 199–208 W 203–209 M~ET 208–209 W 168–180 M~ET	+5 W -21 W - 10 H +14 H +9 H -6 M +6 H	$\begin{array}{l} C_{13}H_{18}N_{2}O_{4}\\ C_{12}H_{18}N_{2}O_{4}\\ C_{12}H_{18}N_{2}O_{4}\\ C_{14}H_{21}N_{2}O_{5}\\ C_{44}H_{21}N_{2}O_{5}\\ C_{32}H_{47}FN_{2}O_{5}\\ C_{72}H_{45}FN_{2}O_{5}\\ \end{array}$
$\begin{array}{c} H_1OH \rightarrow \\ H_1OH_4(A_1OH \rightarrow : 1_{r-1} - H_{r-1}OH_{r-1}(A_1) + H_2O_1(A_1) + H_2O$	72 AC 44 M 96 M 87 M 74 M 85 M 71 M 96 AC	209-210 W 212-213 M 199-208 W 203-209 M-ET 208-209 W 168-180 M-ET	-21 W -10 H +14 H +9 H -6 M +6 H	$\begin{array}{l} C_{12}H_{18}N_2O_4\\ C_{16}H_{18}N_2O_5\\ C_{16}H_{23}N_2O_2S\\ C_{16}H_{17}N_2O_5\\ C_{17}H_{17}FN_2O_5\\ C_{17}H_{15}FN_2O_1\end{array}$
$\begin{array}{c} H)CH_{A}(H,OH \rightarrow (:::))\\ CH_{A}(H,NH \rightarrow (::))\\ H)C(H,F \rightarrow (::))\\ H)C(H,F \rightarrow (::))\\ H,F \rightarrow (::)\\ H,F \rightarrow (::)\\ H,F \rightarrow (::))\\ H \rightarrow (:::)\\ H \rightarrow (:::))\\ H \rightarrow (:::)\\ H \rightarrow (:::))\\ H \rightarrow (:::))\\ H \rightarrow (:::))$	44 M 96 M 87 M 74 M 85 M 71 M 96 AC	212-213 M 199-208 W 203-209 M~ET 208-209 W 168-180 M~ET	- 10 H +14 II +9 H -6 M +6 H	$\begin{array}{l} C_{12}H_{18}N_2O_5\\ C_{14}H_{13}N_8O_5S\\ C_{16}H_{17}FN_2O_5\\ C_{12}H_{15}FN_2O_5\end{array}$
$\begin{array}{c} H_{C}(A_{1},NHSO_{1}CH_{1}+4)\\ CH_{C}(A_{1},F+4)\\ H_{1},F+4\\ \end{array}$	 96 M 87 M 74 M 85 M 71 M 96 AC 	199-208 W 203-209 M~ET 208-209 W 168-180 M~ET	+14 II +9 H -6 M +6 H	$\begin{array}{c} C_{14}H_{41}N_{3}O_{2}S\\ C_{55}H_{47}FN_{2}O_{3}\\ C_{72}H_{15}FN_{7}O_{3} \end{array}$
$H_{C}H_{F}H \rightarrow H_{F}H \rightarrow H_{F}$	87 M 74 M 85 M 71 M 96 AC	203–209 MET 208–209 W 168–180 M. ET	+9 H -6 M +6 H	$\begin{array}{l} C_{12}H_{17}FN_2O_3\\ C_{12}H_{15}FN_2O_3\end{array}$
$\overset{H,F-4}{\underset{\bigcirc}{\overset{\longrightarrow}{\overset{\longrightarrow}{\overset{\longrightarrow}{\overset{\longrightarrow}{\overset{\longrightarrow}{\overset{\longrightarrow}{\overset{\longrightarrow}{\overset$	74 M 85 M 71 M 96 AC	208-209 W 168-180 M-ET	-6 M +6 H	$\mathbf{C}_{12}\mathbf{H}_{13}\mathbf{FN}_{2}\mathbf{O}_{1}$
UH-re-C ₄ H ₁ : 1- CH-re-C ₄ H ₁ : 1-	85 M 71 M 96 AC	168-180 M-ET	+6 H	
CH-c-C ₆ H ₁₁ ; D-	71 M 96 AC			CH189505-0.999150
CH-c-C ₆ H ₁₁ ; D-	96 AC	195-196 M	-17 M	
CH-c-C ₆ H ₁₁ ; D-				$\mathrm{C}_{10}\mathrm{H}_{11}\mathrm{N}_{2}\mathrm{O}_{1}$
CH-c-C ₆ H ₁₁ ; D-		203205 M	- 22 M	$C_{45}H_{15}N_4O_3$
CH-c-C ₆ H ₁₁ ; D-			- 22 M - 19 M	
	60 M	184–185 M–W 207–208 M–W	- 19 M + 16 M	$C_{13}H_{23}N_2O_3$ $C_{13}H_{23}N_2O_3$
	94 AC	193-202 M-W	+7 AC	$C_0H_{22}N_2O_2$
Ha)CH2re-C6H11: 1	78 M	179-180 P-ET	- 14 W	C ₁₄ H ₂₆ N ₂ O ₁₇ 0, 25H ₂ O
H ₈)CH ₂ -c-C ₆ H ₁₁ ; p-	64 M	194-196	+1 W	$C_{14}H_{18}N_2O_3$
	91 M	224-225 W	+16 H	$C_{10}H_{18}N_2O_3$
CH ₂ CH ₂ CH ₃	92 M	190-194 A W	$\pm 9 \text{ AC}$	C ₂ H ₂ N ₂ O ₄ -0, 5H ₂ O
(CH ₄)CH ₃ ′ CH ₄ CH(CH ₈)CH ₅ ; 1	89 M 91 AC	222-223 MW 166-168 W	-17 M	$C_{10}H_{20}N_2O_3$ $C_{10}H_{20}N_2O_3 \cdot 0.5H_2O$
				$C_{10}H_{20}N_2O_3(0, 3H_2O)$ $C_{10}H_{20}N_2O_3(0, 25H_2O)$
	93 M	196~200 A~W	+12 AC	C ₁₀ H ₂₀ N ₂ O ₃ , H ₂ O
	88 M	200–201 W	+9 AC	$C_{15}H_{26}N_2O_3 \cdot 0$, $25H_2O$
CH ₂) ₃ CH ₃	98 M	[88-193 A-W	± 11 AC	$C_{10}H_{20}N_2O_3 \cdot 0.5H_2O$
	89 M	200-201 W	+8 AC	$C_0H_{22}N_2O_4 \cdot 0.25H_2O$
				$C_{11}H_{22}N_2O_4$ $C_1H_2N_2O_4O_222H_2O_4$
				C ₁₁ H ₂₂ N ₂ O ₅ +0.25H ₂ O C ₁₁ H ₂₂ N ₂ O ₅ +0.25H ₂ O
				$C_{11}H_{21}N_2O_3 \cdot 0.25H_2O$ $C_{11}H_{22}N_2O_3 \cdot 0.5H_2O$
	94 M	187-189 W	5 M	C ₁₀ H ₂₂ N ₂ O ₅ , H ₂ O
	97 M	213-214 M-W	-5 M	$C_1(H_2(N_2O_3), 0.5H_2O$
CH ₂) ₄ CH ₁ : D-	96 M	217-218 M-W	+5 M	$C_{11}H_{22}N_2O_3$
				$C_{13}H_{22}N_2O_3$
				$C_{13}H_{22}N_2O_3 \cdot 0.5H_2O$ $C_{12}H_2N_2O_3$
				C ₁₁ H ₂₂ N ₂ O ₃ C ₁₁ H ₂₂ N ₂ O ₃ ·0.5H ₂ O
		192–195 W	-26 H	C ₁₁ H ₂₂ N ₂ O ₃ ·0.25H ₂ O
	77 M	166~170 M-ET	+3 M	C ₁₀ H ₂₀ N ₂ O ₄ ·0.25H ₂ O
	85 M	180-190	-8 M	$C_{12}H_{21}N_2O_3\cdot 0, 5H_4O$
			n t-Glu. ≥T	he amide was der ive d fro
	CH ₄ CH ₄ CH(CH ₃)CH ₃ : 1 H ₂ CH ₂ CH(CH ₂)CH ₃ : 1 H ₄ CH ₂ CH(CH ₃)CH ₃ : 1 H ₄ CH ₄ CH(CH ₃)CH ₃ : 1 CH ₂ CH ₄ OCH ₂ CH ₃ CH ₂) ₂ CH ₃ eviations and explanatic rom p-Asp. [*] All compo	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$


	 trained to discriminate cocaine (10 mg/kg, intraperitoneally), methamphetamine (1 mg/kg, intraperitoneally), ±MDMA (1.5 mg/kg, intraperitoneally), or (-)-2,5-dimethoxy-4-methylamphetamine hydrochloride (0.5 mg/kg, intraperitoneally) from salineMDAI fully substituted for the discriminative stimulus effects of MDMA (2.5 mg/kg), (-)-2,5-dimethoxy-4- methylamphetamine hydrochloride (5 mg/kg), and cocaine (7.5 mg/kg), but produced only 73% methamphetamine- appropriate responding at a dose that suppressed responding (7.5 mg/kg). MDAI produced tremors at 10 mg/kg in one methamphetamine-trained rat. MDAI produced conditioned place preference from 0.3 to 10 mg/kg. The effects of MDAI on locomotor activity and drug discrimination were similar to those produced by MDMA, having both psychostimulant-like and hallucinogen-like effects; thus, MDAI may have similar abuse potential as MDMA. 5. Nichols (1986) "Synthesis and Evaluation of 2,3-Dihydrobenzofuran Analogues of the Hallucinogen 1-(2,5-Dimethoxy-4-methylphenyl)-2-aminopropane: Drug
	Discrimination Studies in Rats" Vol. 29 (2): 302-304.
	From page 304, paragraph 2: "This is all the more difficult to explain in light of the fact that 2-methoxy-4,5- (methylenedioxy)amphetamine (8; MMDA-2) is active H_3C $\$ NH2
	O OCH3
	8 and produces clear central effects at an oral dosage of 25 mg of the hydrochloride"
7. The compound of claim 1, wherein R ₁ is:	2. U.S. Pat. App. Doc. No. 2009/0131335 "ABUSE- RESISTANT AMPHETAMINE PRODRUGS" (Published 21 May 2009).
H H K H	From claim 1 : "A method, in a subject, of preventing euphoria due to an amphetamine or a pharmaceutically effective salt thereof, said method comprising orally administering to said subject a prodrug or a salt thereof said prodrug comprising said amphetamine covalently bonded to a single amino acid or to a peptide comprising from 2 to 10 amino acids, whereby the blood levels of said amphetamine achieve a therapeutically effect level but said blood levels do not result in a euphoric effect."

From paragraph [0096]: "The amphetamine, A, can be
any of the sympathomimetic phenethylamine
derivatives which have central nervous system
stimulant activity such as amphetamine, or any
derivative, analog, or salt thereof. Exemplary
amphetamines include, but are not limited to,
amphetamine, methamphetamine, methylphenidate, p-
methoxyamphetamine, methylenedioxyamphetamine ,
2,5-dimethoxy-4-methylamphetamine, 2,4,5-
trimethoxyamphetamine, and 3,4 -
methylenedioxymethamphetamine"
methyleneuloxymethamphetamme
From paragraph [0107] : "Each amino acid can be any
one of the L- or D-enantiomers, preferably L-enantiomers,
of the naturally occurring amino acids: alanine (Ala or A),
arginine (Arg or R), asparagine (Asn or N), aspartic acid
(Asp or D), cysteine (Cys or C), glycine (Gly or G),
glutamic acid (Glu or E), glutamine (Gln or Q), histidine
(His or H), isoleucine (Ile or I), leucine (Leu or L), lysine
(Lys or K), methionine (Met or M), proline (Pro or P),
phenylalanine (Phe or F), serine (Ser or S), tryptophan
(Trp or W), threonine (Thr or T), tyrosine (Tyr or Y), and
valine (Val or V)"
4. Gatch (2016) "Locomotor, discriminative stimulus, and
place conditioning effects of MDAI in rodents" Behavioral
Pharmacology, Vol 27 (6): 497-505.
From abstract : "5,6-Methylenedioxy-2-aminoindane
(MDAI) has become a common substitute for (\pm) -3,4-
methylenedioxymethamphetamine (MDMA) in Ecstasy.
MDAI is known to produce MDMA-like discriminative
stimulus effects, but it is not known whether MDAI has
psychostimulant or hallucinogen-like effects. MDAI was
tested for locomotor stimulant effects in mice and
subsequently for discriminative stimulus effects in rats
trained to discriminate cocaine (10 mg/kg,
intraperitoneally), methamphetamine (1 mg/kg,
intraperitoneally), ±MDMA (1.5 mg/kg, intraperitoneally),
or (-)-2,5-dimethoxy-4-methylamphetamine hydrochloride
(0.5 mg/kg, intraperitoneally) from salineMDAI fully
substituted for the discriminative stimulus effects of
MDMA (2.5 mg/kg), (-)-2,5-dimethoxy-4-
methylamphetamine hydrochloride (5 mg/kg), and cocaine
(7.5 mg/kg), but produced only 73% methamphetamine-
appropriate responding at a dose that suppressed
responding (7.5 mg/kg). MDAI produced tremors at
10 mg/kg in one methamphetamine-trained rat. MDAI
produced conditioned place preference from 0.3 to
10 mg/kg. The effects of MDAI on locomotor activity
and drug discrimination were similar to those
and usug discrimination were similar to those

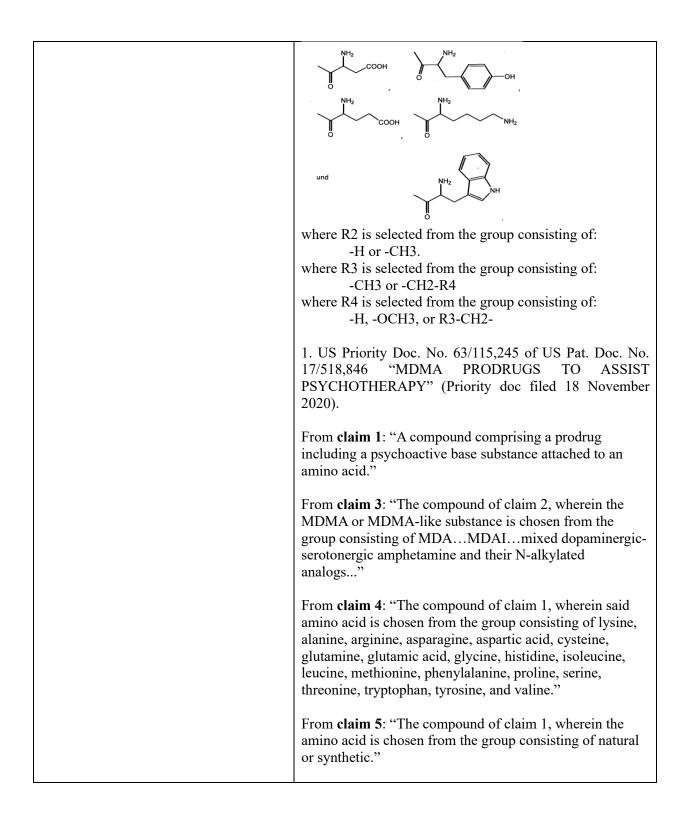
8. The compound of claim 1, wherein said compound is selected from any one of the following compounds: $\begin{cases} \downarrow \downarrow \uparrow \uparrow \downarrow $	produced by MDMA, having both psychostimulant-like and hallucinogen-like effects; thus, MDAI may have similar abuse potential as MDMA. 5. Nichols (1986) "Synthesis and Evaluation of 2,3- Dihydrobenzofuran Analogues of the Hallucinogen 1-(2,5- Dinethoxy-4methylphenyl)-2-aminopropane: Drug Discrimination Studies in Rats" Vol. 29 (2): 302-304. 5. From page 304, paragraph 2: "This is all the more difficult to explain in light of the fact that 2-methoxy-4,5- methylenedioxy)amphetamine (8; MMDA-2) is active $H_{3}C \downarrow \cap NH_{2} \\ c \downarrow c \downarrow c \downarrow C H_{3} \\ e$ and produces clear central effects at an oral dosage of 25 mg of the hydrochloride" From the application of interest's priority document DE 10 2020 123 793.6 (filed 11 September 2020): From claim 1: "1. 3,4-methylenedioxy-amphetamine beptide according to general formula I: (+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (+ (+
---	---

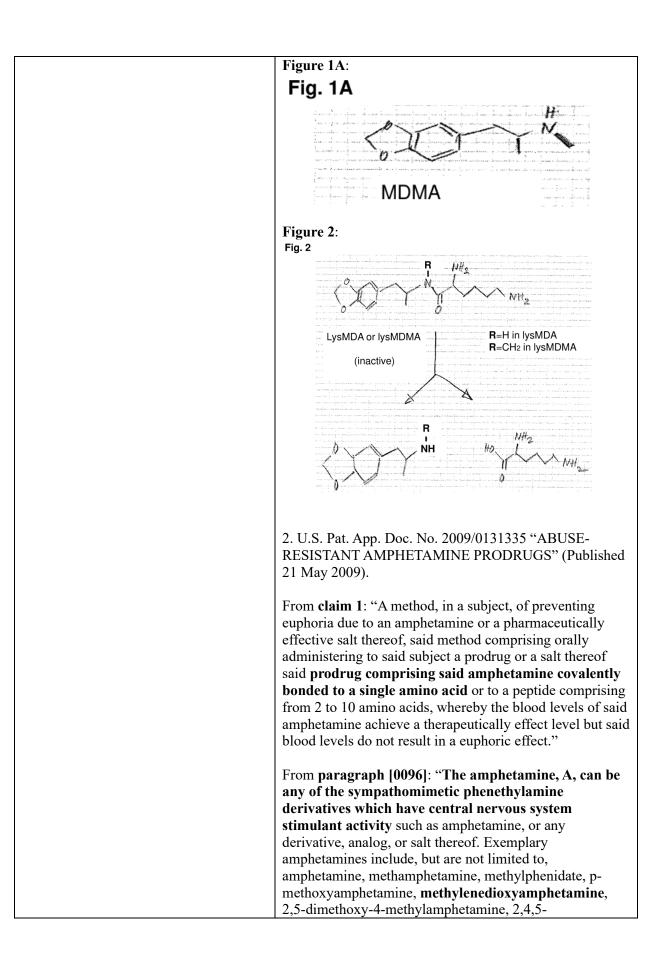
1. US Priority Doc. No. 63/115,245 of US Pat. Doc. No. "MDMA PRODRUGS 17/518,846 TO ASSIST PSYCHOTHERAPY" (Priority doc filed 18 November 2020). From claim 1: "A compound comprising a prodrug including a psychoactive base substance attached to an amino acid." From **claim 3**: "The compound of claim 2, wherein the MDMA or MDMA-like substance is chosen from the group consisting of MDA...MDAI...mixed dopaminergicserotonergic amphetamine and their N-alkylated analogs..." From **claim 4**: "The compound of claim 1, wherein said amino acid is chosen from the group consisting of lysine, alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine." From claim 5: "The compound of claim 1, wherein the amino acid is chosen from the group consisting of natural or synthetic." Figure 1A: Fig. 1A **MDMA** Figure 2:

or a pharmaceutically acceptable salt thereof.

2. U.S. Pat. App. Doc. No. 2009/0131335 "ABUSE-RESISTANT AMPHETAMINE PRODRUGS" (Published 21 May 2009).

From **claim 1**: "A method, in a subject, of preventing euphoria due to an amphetamine or a pharmaceutically effective salt thereof, said method comprising orally administering to said subject a prodrug or a salt thereof said **prodrug comprising said amphetamine covalently bonded to a single amino acid** or to a peptide comprising from 2 to 10 amino acids, whereby the blood levels of said amphetamine achieve a therapeutically effect level but said blood levels do not result in a euphoric effect."

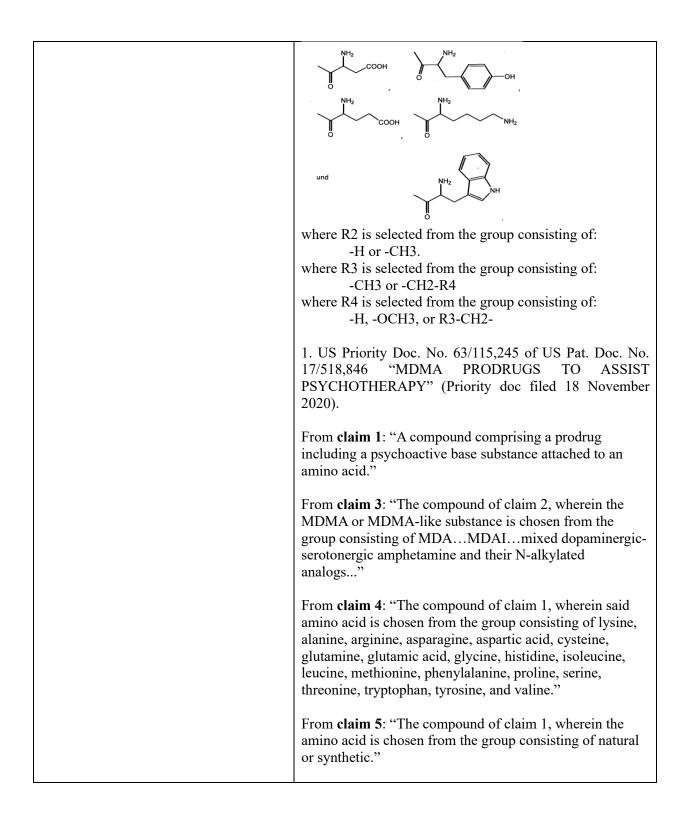

From paragraph [0096]: "The amphetamine, A, can be any of the sympathomimetic phenethylamine derivatives which have central nervous system stimulant activity such as amphetamine, or any derivative, analog, or salt thereof. Exemplary amphetamines include, but are not limited to, amphetamine, methamphetamine, methylphenidate, pmethoxyamphetamine, methylenedioxyamphetamine, 2,5-dimethoxy-4-methylamphetamine, 2,4,5trimethoxyamphetamine, and 3,4methylenedioxymethamphetamine..."

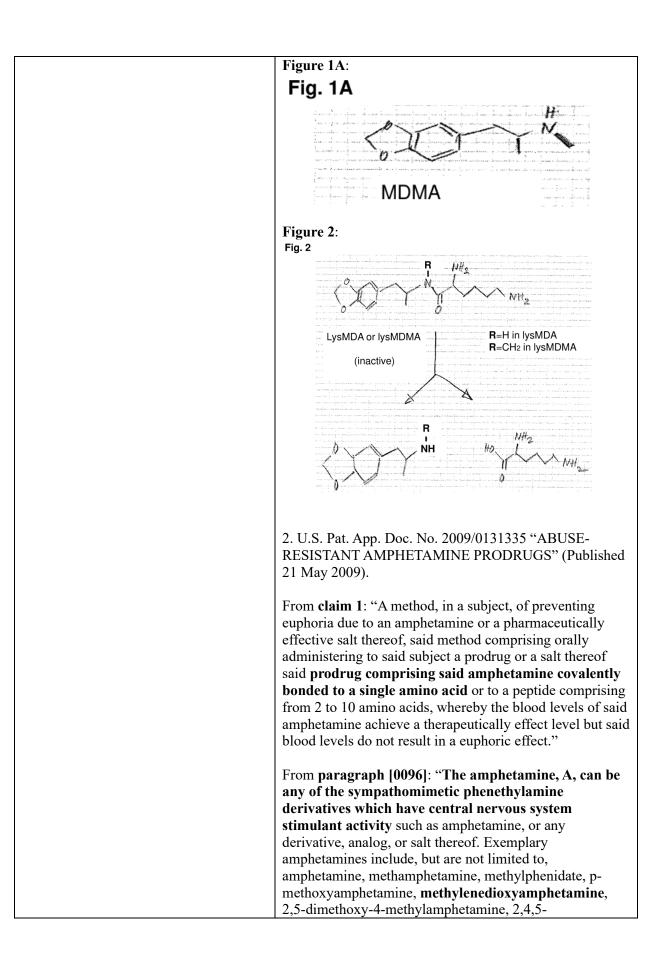

From **paragraph** [0107]: "Each amino acid can be any one of the L- or D-enantiomers, preferably L-enantiomers, of the naturally occurring amino acids: **alanine** (Ala or A), arginine (Arg or R), **asparagine** (Asn or N), aspartic acid (Asp or D), cysteine (Cys or C), glycine (Gly or G), **glutamic acid** (Glu or E), **glutamine** (Gln or Q), histidine (His or H), **isoleucine** (Ile or I), leucine (Leu or

amides" J. Med. Chem. Vol 13(6): 1217-1221.

Ta	able	e 2 (entry 64):					
				are II			
No	ίο.	X		ACID AMIDES sp-X" Mp, "C	alt, deg	Formula'	Taste
50 51		$INCH(CH_3)CH_2C_6H_5;$ 1 $INCH(CH_3)CH_2C_6H_5;$ 12-	88 AC 98 AC	197–198 W 222-225 E ·W	- 12 M + 14 W	$C_{13}H_{18}N_2O_3$ $C_{13}H_{18}N_2O_3$	50
52 53		INCH(CH ₂)CH ₂ C ₄ H ₅ ⁶ INCH ₂ CH ₂ C ₄ H ₅	79 M 70 AC	164-166 A-W 212-214 P-W	+34 M -15 W	$C_{14}H_{26}N_2O_3$ $C_{12}H_{16}N_2O_3$	-
54 55	54 H	INCH(C ₂ H ₅)CH ₂ C ₄ H ₅ INC(CH ₅) ₂ CH ₂ C ₆ H ₅	91 AC 96 AC	158~163 MET 159-161 W	+8 M ~16 M	$C_{14}H_{20}N_2O_4 \cdot 0$, 25H ₂ O $C_{14}H_{20}N_2O_5$	3 20
56		INCHCH.	91 M	223-224 M-W	6 II	CuHusN ₂ O ₂	10
		CH:					
57		INCHCHC ₆ H ₃ ; t- INCH ₂ CH(CH ₃)C ₆ H;	95 M 70 AC	175-178 182-188 W	+5 M -20 W	$C_{14}H_{16}N_2O_6 \cdot H_2O$ $C_{12}H_{16}N_2O_6$	
59 60	59 N	$(CH_3)CH(CH_3)CH_2C_4H_5$; L- $N(CH_3)CH(CH_3)CH_2C_4H_5$; D-	84 M 82 M	164-166 185-187	+47 W +12 W	$C_{14}H_{20}N_2O_1 \cdot 0.5H_2O$ $C_{14}H_{20}N_2O_2 \cdot 0.5H_2O$	
61 62	61 H	INCH(CH ₄)CH ₂ CH ₂ C ₆ H. INCH(CH ₄)CH ₂ OC ₆ H.	95 AC 68 M	190–196 MW 180–184 M-W	+16 H +11 H	$C_{14}H_{20}N_4O_5$ $C_{17}H_{18}N_7O_5$	5 10
63	63 H	INCH ₂ CH ₂ OC ₄ H ₂ INCH ₂ CH ₂ OC ₄ H ₂ INCH(CH ₂)CH ₂ C ₆ H ₃ (OCH ₂ O)-3,4	85 AC 95 M	180-194 M-W 184-185 W 189-192	- 13 H +6 M	$C_{12}H_{16}N_2O_4$ $C_{12}H_{16}N_2O_5$	÷
65	65 H	INCH(CH ₂ OH)CH ₂ C ₄ H ₅ : 1	95 AC	237-238 W	-26 AC	$C_{13}H_{18}N_2O_4$ $C_{13}H_{18}N_2O_4 = 0.5H_2O$	t
66 67	67 H	INCH(CH ₄)CH(OH)C ₈ H ₅ INCH(CH ₄)CH ₂ C ₆ H ₄ OH-4	98 M 95 M	188-190 M 160-185	+ 10 M + 5 W	$C_{13}\Pi_{15}N_2O_4$	+
68 69	69 H	INCH2CH2C4H4OH-4 INCH(CH2OH)CH2C4H4OH-4; L-	72 AC 44 M	209-210 W 212-213 M	21 W 10 H	$C_{12}H_{18}N_2O_4$ $C_{16}H_{18}N_2O_5$	+++
70		INCH(CH ₃)CH ₂ C ₆ H ₄ NHSO ₂ CH ₁ -4; 1 INCH(CH ₃)CH ₂ C ₆ H ₄ F-4	96 M 87 M	199–208 W 203–209 M~ET	+14 H +9 H	$C_{14}H_{21}N_3O_5S$ $C_{13}H_{17}FN_2O_3$	20
72	72 H	INCH ₂ CH ₂ C ₄ H ₄ F-4	74 M	208-209 W	-6 M	$\mathrm{C}_{12}\mathrm{H}_{13}\mathrm{FN}_{2}\mathrm{O}_{3}$	5
73	73 н	INCH(CH_)CH	85 M	168-180 M-ET	+6 H	$C_{11}H_{16}N_{2}O_{4} \cdot 0.333H_{2}O$	10
74	74 н	INCH,CH, -	71 M	195-196 M	-17 M	$\mathrm{C}_{10}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}_{1}$	-÷-
75	75	NCHICHUCH	96 AC	203-205 M	- 22 M	$C_{45}H_{19}N_4O_3$	
76	76 H	INCH(CH ₃)CH ₂ -e-C ₆ H ₁₁ ; 1	84 AC	184-185 M-W	- 19 M	$C_{13}H_{23}N_2O_3$	50
77		$INCH(CH_8)CH_2$ - c - C_6H_{11} ; D- $INCH_2CH_2$ - c - C_8H_{11}	60 M 94 AC	207–208 M–W 193–202 M–W	$^{+16}_{+7 AC}$	$C_{13}H_{24}N_2O_3$ $C_{13}H_{22}N_2O_3$	5 10
79		$(CH_4)CH(CH_4)CH_{2'}c$ - C_6H_{11} ; t- $(CH_4)CH(CH_4)CH_{2'}c$ - C_6H_{11} ; n-	78 M 64 M	179–180 P–ET 194–196	- 14 W +1 W	$C_{14}H_{26}N_2O_4 \cdot 0$, 25H ₂ O $C_{14}H_{26}N_2O_2$	
81 82	81 H	IN-r-C4Ha INCH(CH ₃)CH ₂ CH ₂ CH ₃	91 M 92 M	224-225 W 190-194 A W	+16 H +9 AC	C ₁₀ H ₁₈ N ₂ O ₃ C ₅ H ₁₈ N ₂ O ₃ -0,5H ₂ O	 U
\$3	83 H	$IN(CH_2)_3CH(CH_4)CH_3$	89 M	222223 MW		$C_{10}H_{20}N_2O_3$	0
84 85		INCH(CH ₃)CH ₂ CH(CH ₃)CH ₃ : 1 INCH(CH ₃)CH ₂ CH(CH ₃)CH ₃ : 0-	91 AC 92 AC	166–168 W 201–202 W	-17 M +9 M	$C_{10}H_{20}N_2O_3 \cdot 0$, $5H_2O$ $C_{10}H_{20}N_2O_3 \cdot 0$, $25H_2O$	-
86 87		INCH(C ₂ H ₃)CH ₂ CH ₃ CH ₃ IN(CH ₂) ₃ CH ₃	93 M 88 M	196~200 AW 200-201 W	+12 AC +9 AC	$C_{10}H_{20}N_2O_3$, H_2O $C_{10}H_{20}N_2O_3$, $0, 25H_2O$	
89	ss H	INCH(CH ₃)(CH ₂) ₃ CH ₃	98 M	[88]-193 AW	± 11 AC	$C_{10}H_{20}N_2O_3 \cdot 0.5H_2O$	30 +
90	90 H	IN(CH ₂) ₆ CH ₃ INCH(CH ₃)(CH ₂) ₄ CH ₂	89 M 95 M	200-201 W 190-194	+8 AC +7 AC	C ₁₁ H ₂₂ N ₂ O ₄ -0, 25H ₂ O C ₁₁ H ₂₂ N ₂ O ₃	20
91 92	92 H	INCH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₃ INCH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₅	94 M 94 M	162–166 W 181–188 A–W	-2 M +9 AC	$C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$ $C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$	+ 50
93 94		$INCH(C_4H_4)(CH_2)_3CH_4$ $INCH(CH_3)(CH_2)_4CH_4;$ 1	98 M 94 M	190–195 187–189 W	+9 AC 5 M	$C_0 H_{22} N_2 O_5 \cdot 0.5 H_2 O \\ C_0 H_{22} N_2 O_5 \cdot H_2 O$	+ 50
95	95 H	$INCH(CH_3)(CH_2)_4CH_3; L^d$ $INCH(CH_3)(CH_2)_4CH_4; D$	97 M 96 M	213-214 M-W 217-218 M-W	-5 M +5 M	$C_{11}H_{22}N_2O_3 \cdot 0.5H_2O_5O_5H_2O_5$	
97	97 H	$INCH(CH_3)(CH_2)_4CH_3; D^4$	97 M	189192 W	+6 M	$C_{11}H_{22}N_2O_3$	100
98 99	99 H	INCH(CH ₂)CH ₂ CH ₂ CH(CH ₂)CH ₃ ; I INCH(CH ₅)CH ₂ CH ₂ CH(CH ₃)CH ₅ ; $1/^d$	84 M 99 M	187-190 W 215-216 M-W	+23 H +2 M	$C_{11}H_{22}N_2O_3 \cdot 0.5H_2O_3$ $C_{11}H_{22}N_2O_3$	0
100	н н	$INCH(CH_3)CH_2CH_2CH(CH_4)CH_3; D-INCH(CH_3)CH_2CH_2CH(CH_5)CH_3; D^4$	96 M 91 M	210–213 M–W 192–195 W	- 3 M - 26 H	$C_{11}H_{22}N_2O_5 \cdot 0.5H_2O \\ C_{11}H_{22}N_2O_8 \cdot 0.25H_2O$	-+
102 103	02 H	INCH(CH ₃)CH ₂ CH ₂ OCH ₂ CH ₃ INCH(CH ₂)(CH ₂):CH ₃	77 M 85 M	166~170 M-ET 180~190	+3 M -8 M	$C_{10}H_{20}N_2O_4 \cdot 0.25H_4O$ $C_{12}H_{21}N_2O_3 \cdot 0.5H_4O$	10- 10-
4 Se	See Tabl	le I for abbreviations and explanations. was derived from p-Asp. * All compound	^b The amie	le was derived from			i m-Asp.
pla	lace	tch (2016) "Locor conditioning effe nacology, Vol 27 (cts of	MDAI i		,	
(M. ma M sti ps tes sul tra int	ADA ethy IDA imu sych sted abse aine	abstract: "5,6-M AI) has become a ylenedioxymethan AI is known to pro- nus effects, but it nostimulant or hall for locomotor sti equently for discrim- ted to discriminate peritoneally), meth- peritoneally) +MI	comr nphet oduc is no ucino mula ninat cocai	non subs camine (M e MDM t known ogen-like nt effects ive stimu ne (10 m hetamine	titute MDM A-like whetl e effec s in m alus e ag/kg, e (1 m	for (±)-3,4- A) in Ecstas e discrimina her MDAI h ets. MDAI v ice and ffects in rats g/kg,	sy. ative las vas
int	trap	peritoneally), ±MI)-2,5-dimethoxy-4	ЭMÂ	(1.5 mg/	kg, in	traperitonea	• •

	(0.5 mg/kg, intraperitoneally) from salineMDAI fully substituted for the discriminative stimulus effects of MDMA (2.5 mg/kg), (-)-2,5-dimethoxy-4- methylamphetamine hydrochloride (5 mg/kg), and cocaine (7.5 mg/kg), but produced only 73% methamphetamine- appropriate responding at a dose that suppressed responding (7.5 mg/kg). MDAI produced tremors at 10 mg/kg in one methamphetamine-trained rat. MDAI produced conditioned place preference from 0.3 to 10 mg/kg. The effects of MDAI on locomotor activity and drug discrimination were similar to those produced by MDMA, having both psychostimulant-like and hallucinogen-like effects; thus, MDAI may have similar abuse potential as MDMA. 5. Nichols (1986) "Synthesis and Evaluation of 2,3- Dihydrobenzofuran Analogues of the Hallucinogen 1-(2,5- Dimethoxy-4methylphenyl)-2-aminopropane: Drug Discrimination Studies in Rats" Vol. 29 (2): 302-304. From page 304, paragraph 2: "This is all the more difficult to explain in light of the fact that 2-methoxy-4,5- (methylenedioxy)amphetamine (8; MMDA-2) is active $H_3C \downarrow NH_2$ $0 \downarrow \downarrow \downarrow 0 \downarrow 0 \Box H_3$ and produces clear central effects at an oral dosage of 25 mg of the hydrochloride"
9. A pharmaceutical composition comprising at least one compound of claim 1 and one or more pharmaceutically acceptable excipients.	From the application of interest's priority document DE 10 2020 123 793.6 (filed 11 September 2020): From claim 1: "1. 3,4-methylenedioxy-amphetamine peptide according to general formula I: $ext{if } r_{R_4}$ r_{R_1} r_{R_4} r_{R_1} r_{R_1} r_{R_4} r_{R_1} r_{R_4} r_{R_1} r_{R_4} r_{R_1} r_{R_1} r_{R_1} r_{R_1} r_{R_2} r_{R_3} r_{R_1} r_{R_1} r_{R_2} r_{R_3} r_{R_1} r_{R_1} r_{R_2} r_{R_3} r_{R_1} r_{R_2} r_{R_3} r_{R_1} r_{R_2} r_{R_3} r_{R_1} r_{R_1} r_{R_2} r_{R_3} r_{R_1} r_{R_2} r_{R_3} r_{R_1} r_{R_2} r_{R_3} r_{R_1} r_{R_3} r_{R_1} r_{R_3} r_{R_1} r_{R_3} r_{R_1} r_{R_2} r_{R_3} r_{R_1} r_{R_1} r_{R_2} r_{R_3} r_{R_1} r_{R_3} r_{R_1} r_{R_3} r_{R_1} r_{R_1} r_{R_1} r_{R_1} r_{R_2} r_{R_1} r_{R_1} r_{R_1} r_{R_2} r_{R_1} r_{R_1} r_{R_1} r_{R_2} r_{R_1} r_{R_2} r_{R_1} r_{R_1} r_{R_2} r_{R_2} r_{R_1} r_{R_2} r_{R_1} r_{R_2} r_{R_2} r_{R_1} r_{R_2} $r_{R_$

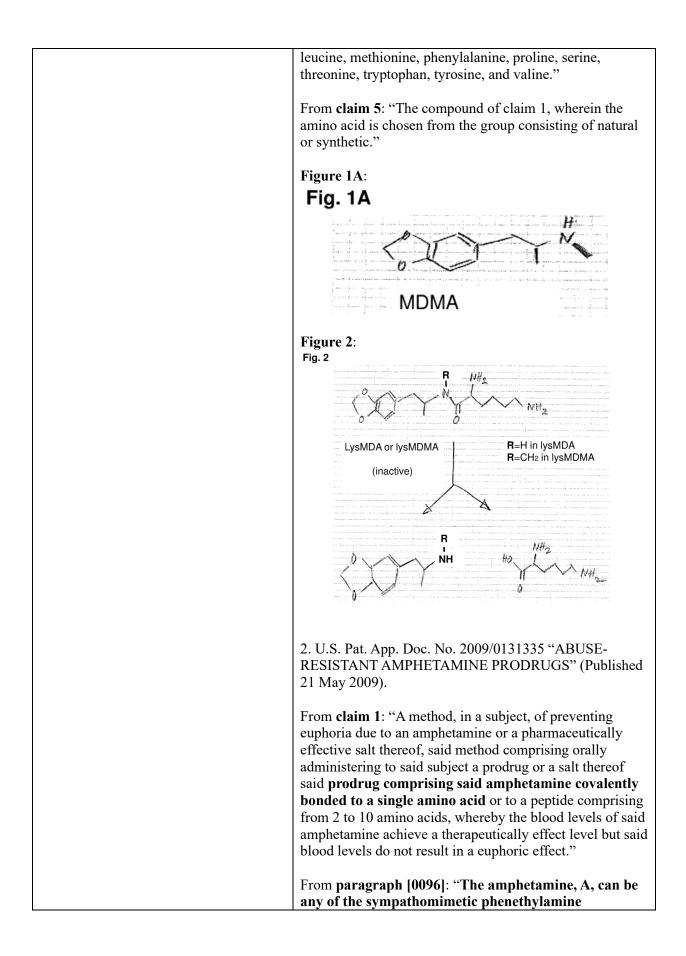




trimethoxyamphetamine, and 3,4- methylenedioxymethamphetamine "
 From paragraph [0107]: "Each amino acid can be any one of the L- or D-enantiomers, preferably L-enantiomers, of the naturally occurring amino acids: alanine (Ala or A), arginine (Arg or R), asparagine (Asn or N), aspartic acid (Asp or D), cysteine (Cys or C), glycine (Gly or G), glutamic acid (Glu or E), glutamine (Gln or Q), histidine (His or H), isoleucine (Ile or I), leucine (Leu or L), lysine (Lys or K), methionine (Met or M), proline (Pro or P), phenylalanine (Phe or F), serine (Ser or S), tryptophan (Trp or W), threonine (Thr or T), tyrosine (Tyr or Y), and valine (Val or V). In a preferred embodiment, the peptide comprises only naturally occurring amino acids and/or only L-amino acids. Each amino acids, such as aminohexanoic acid, biphenylalanine, cyclohexylglycine, diethylglycine, dipropylglycine, 2,3-diaminoproprionic acid, homophenylalanine, norleucine, ornithine, phenylalanine (4-fluoro), phenylalanine(2,3,4,5,6-pentafluoro), phenylalanine(4-nitro), phenylglycine, 3-carboxylic acid, and tert-leucine. Preferably, synthetic amino acids with alkyl side chains are selected from C1-C17 alkyls, preferably C1-C6 alkyls. In one embodiment, the peptide comprises one or more amino acid alcohols, e.g., serine and threonine. In another embodiment, the peptide comprises one or more N-methyl amino acids, e.g., N-methyl aspartic acid." 3. MAZUR (1970) "Structure-taste relation of aspartic acid amides" J. Med. Chem. Vol 13(6): 1217-1221.

Ta	able	e 2 (entry 64):					
				are II			
No	ίο.	X		ACID AMIDES sp-X" Mp, "C	alt, deg	Formula'	Taste
50 51		$INCH(CH_3)CH_2C_6H_5;$ 1 $INCH(CH_3)CH_2C_6H_5;$ 12-	88 AC 98 AC	197–198 W 222-225 E ·W	- 12 M + 14 W	$C_{13}H_{18}N_2O_3$ $C_{13}H_{18}N_2O_3$	50
52 53		INCH(CH ₂)CH ₂ C ₄ H ₅ ⁶ INCH ₂ CH ₂ C ₄ H ₅	79 M 70 AC	164-166 A-W 212-214 P-W	+34 M -15 W	$C_{14}H_{26}N_2O_3$ $C_{12}H_{16}N_2O_3$	-
54 55	54 H	INCH(C ₂ H ₅)CH ₂ C ₄ H ₅ INC(CH ₅) ₂ CH ₂ C ₆ H ₅	91 AC 96 AC	158~163 MET 159-161 W	+8 M ~16 M	$C_{14}H_{20}N_2O_4 \cdot 0$, 25H ₂ O $C_{14}H_{20}N_2O_5$	3 20
56		INCHCH.	91 M	223-224 M-W	6 II	CuHuS ₂ O ₂	10
		CH:					
57		INCHCHC ₆ H ₃ ; t- INCH ₂ CH(CH ₃)C ₆ H;	95 M 70 AC	175-178 182-188 W	+5 M -20 W	$C_{14}H_{16}N_2O_6 \cdot H_2O$ $C_{12}H_{16}N_2O_6$	
59 60	59 N	$(CH_3)CH(CH_3)CH_2C_4H_5$; L- $N(CH_3)CH(CH_3)CH_2C_4H_5$; D-	84 M 82 M	164-166 185-187	+47 W +12 W	$C_{14}H_{20}N_2O_1 \cdot 0.5H_2O$ $C_{14}H_{20}N_2O_2 \cdot 0.5H_2O$	
61 62	61 H	INCH(CH ₄)CH ₂ CH ₂ C ₆ H. INCH(CH ₄)CH ₂ OC ₆ H.	95 AC 68 M	190–196 MW 180–184 M-W	+16 H +11 H	$C_{14}H_{20}N_4O_5$ $C_{17}H_{18}N_7O_5$	5 10
63	63 H	INCH ₂ CH ₂ OC ₄ H ₂ INCH ₂ CH ₂ OC ₄ H ₂ INCH(CH ₂)CH ₂ C ₆ H ₃ (OCH ₂ O)-3,4	85 AC 95 M	180-194 M-W 184-185 W 189-192	- 13 H +6 M	$C_{12}H_{16}N_2O_4$ $C_{12}H_{16}N_2O_5$	÷
65	65 H	INCH(CH ₂ OH)CH ₂ C ₄ H ₅ : 1	95 AC	237-238 W	-26 AC	$C_{13}H_{18}N_2O_4$ $C_{13}H_{18}N_2O_4 = 0.5H_2O$	t
66 67	67 H	INCH(CH ₄)CH(OH)C ₈ H ₅ INCH(CH ₄)CH ₂ C ₆ H ₄ OH-4	98 M 95 M	188-190 M 160-185	+ 10 M + 5 W	$C_{13}\Pi_{15}N_2O_4$	+
68 69	69 H	INCH2CH2C4H4OH-4 INCH(CH2OH)CH2C4H4OH-4; L-	72 AC 44 M	209-210 W 212-213 M	21 W 10 H	$C_{12}H_{18}N_2O_4$ $C_{16}H_{18}N_2O_5$	+++
70		INCH(CH ₃)CH ₂ C ₆ H ₄ NHSO ₂ CH ₁ -4; 1 INCH(CH ₃)CH ₂ C ₆ H ₄ F-4	96 M 87 M	199–208 W 203–209 M~ET	+14 H +9 H	$C_{14}H_{21}N_3O_5S$ $C_{13}H_{17}FN_2O_3$	20
72	72 H	INCH ₂ CH ₂ C ₄ H ₄ F-4	74 M	208-209 W	-6 M	$\mathrm{C}_{12}\mathrm{H}_{13}\mathrm{FN}_{2}\mathrm{O}_{3}$	5
73	73 н	INCH(CH_)CH	85 M	168-180 M-ET	+6 H	$C_{11}H_{16}N_{2}O_{4} \cdot 0.333H_{2}O$	10
74	74 н	INCH,CH, -	71 M	195-196 M	-17 M	$\mathrm{C}_{10}\mathrm{H}_{14}\mathrm{N}_2\mathrm{O}_1$	-÷-
75	75	NCHICHUCH	96 AC	203-205 M	- 22 M	$C_{45}H_{19}N_4O_3$	
76	76 H	INCH(CH ₃)CH ₂ -e-C ₆ H ₁₁ ; 1	84 AC	184-185 M-W	- 19 M	$C_{\pi s}H_{2s}N_{2}O_{s}$	50
77		$INCH(CH_8)CH_2$ - c - C_6H_{11} ; D- $INCH_2CH_2$ - c - C_8H_{11}	60 M 94 AC	207–208 M–W 193–202 M–W	$^{+16}_{+7 AC}$	$C_{13}H_{24}N_2O_3$ $C_{13}H_{22}N_2O_3$	5 10
79		$(CH_4)CH(CH_4)CH_{2'}c$ - C_6H_{11} ; t- $(CH_3)CH(CH_4)CH_{2'}c$ - C_6H_{11} ; n-	78 M 64 M	179–180 P–ET 194–196	- 14 W +1 W	$C_{14}H_{26}N_2O_4 \cdot 0$, 25H ₂ O $C_{14}H_{26}N_2O_2$	
81 82	81 H	IN-r-C4Ha INCH(CH ₃)CH ₂ CH ₂ CH ₃	91 M 92 M	224-225 W 190-194 A W	+16 H +9 AC	C ₁₀ H ₁₈ N ₂ O ₃ C ₅ H ₁₅ N ₂ O ₃ -0,5H ₂ O	 U
\$3	83 H	$IN(CH_2)_3CH(CH_4)CH_3$	89 M	222223 MW		$C_{10}H_{20}N_2O_3$	0
84 85		INCH(CH ₃)CH ₂ CH(CH ₃)CH ₃ : 1 INCH(CH ₃)CH ₂ CH(CH ₃)CH ₃ : 0-	91 AC 92 AC	166–168 W 201–202 W	-17 M +9 M	$C_{10}H_{20}N_2O_3 \cdot 0$, $5H_2O$ $C_{10}H_{20}N_2O_3 \cdot 0$, $25H_2O$	-
86 87		INCH(C ₂ H ₃)CH ₂ CH ₃ CH ₃ IN(CH ₂) ₃ CH ₃	93 M 88 M	196~200 AW 200-201 W	+12 AC +9 AC	$C_{10}H_{20}N_2O_3$, H_2O $C_{10}H_{20}N_2O_3$, $0, 25H_2O$	
89	ss H	INCH(CH ₃)(CH ₂) ₃ CH ₃	98 M	[88]-193 AW	± 11 AC	$C_{10}H_{20}N_2O_3 \cdot 0.5H_2O$	30 +
90	90 H	IN(CH ₂) ₆ CH ₃ INCH(CH ₃)(CH ₂) ₄ CH ₂	89 M 95 M	200-201 W 190-194	+8 AC +7 AC	C ₁₁ H ₂₂ N ₂ O ₄ -0, 25H ₂ O C ₁₁ H ₂₂ N ₂ O ₃	20
91 92	92 H	INCH(CH ₃)CH ₂ CH(CH ₃)CH ₂ CH ₃ INCH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₅	94 M 94 M	162–166 W 181–188 A–W	-2 M +9 AC	$C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$ $C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$	+ 50
93 94		$INCH(C_4H_4)(CH_2)_3CH_4$ $INCH(CH_3)(CH_2)_4CH_4;$ 1	98 M 94 M	190–195 187–189 W	+9 AC 5 M	$C_0 H_{22} N_2 O_5 \cdot 0.5 H_2 O \\ C_0 H_{22} N_2 O_5 \cdot H_2 O$	+ 50
95	95 H	$INCH(CH_3)(CH_2)_4CH_3; L^d$ $INCH(CH_3)(CH_2)_4CH_4; D$	97 M 96 M	213-214 M-W 217-218 M-W	-5 M +5 M	$C_{11}H_{22}N_2O_3 \cdot 0.5H_2O_5O_5H_2O_5$	
97	97 H	$INCH(CH_3)(CH_2)_4CH_3; D^4$	97 M	189192 W	+6 M	$C_{11}H_{22}N_2O_3$	100
98 99	99 H	INCH(CH ₂)CH ₂ CH ₂ CH(CH ₂)CH ₃ ; I INCH(CH ₃)CH ₂ CH ₂ CH(CH ₃)CH ₅ ; $1/^d$	84 M 99 M	187-190 W 215-216 M-W	+23 H +2 M	$C_{11}H_{22}N_2O_3 \cdot 0.5H_2O_3$ $C_{11}H_{22}N_2O_3$	0
100	н н	$INCH(CH_3)CH_2CH_2CH(CH_4)CH_3; D-INCH(CH_3)CH_2CH_2CH(CH_5)CH_3; D^4$	96 M 91 M	210–213 M–W 192–195 W	- 3 M - 26 H	$C_{11}H_{22}N_2O_5 \cdot 0.5H_2O \\ C_{11}H_{22}N_2O_8 \cdot 0.25H_2O$	-+
102 103	02 H	INCH(CH ₃)CH ₂ CH ₂ OCH ₂ CH ₃ INCH(CH ₂)(CH ₂):CH ₃	77 M 85 M	166~170 M-ET 180~190	+3 M -8 M	$C_{10}H_{20}N_2O_4 \cdot 0.25H_4O$ $C_{12}H_{21}N_2O_3 \cdot 0.5H_4O$	10- 10-
4 Se	See Tabl	le I for abbreviations and explanations. was derived from p-Asp. * All compound	^b The amie	le was derived from			i m-Asp.
pla	lace	tch (2016) "Locor conditioning effe nacology, Vol 27 (cts of	MDAI i		,	
(M. ma M sti ps tes sul tra int	ADA ethy IDA imu sych sted abse aine	abstract: "5,6-M AI) has become a ylenedioxymethan AI is known to pro- nus effects, but it nostimulant or hall for locomotor sti equently for discrim- ted to discriminate peritoneally), meth- peritoneally) +MI	comr nphet oduc is no ucino mula ninat cocai	non subs camine (M e MDM t known ogen-like nt effects ive stimu ne (10 m hetamine	titute MDM A-like whetl e effec s in m alus e ag/kg, e (1 m	for (±)-3,4- A) in Ecstas e discrimina her MDAI h ets. MDAI v ice and ffects in rats g/kg,	sy. ative las vas
int	trap	peritoneally), ±MI)-2,5-dimethoxy-4	ЭMÂ	(1.5 mg/	kg, in	traperitonea	• •

(7.5 mg/kg), but produced only 73% methamphetamine- appropriate responding at a dose that suppressed responding (7.5 mg/kg). MDAI produced tremors at 10 mg/kg in one methamphetamine-trained rat. MDAI produced conditioned place preference from 0.3 to 10 mg/kg. The effects of MDAI on locomotor activity and drug discrimination were similar to those produced by MDMA, having both psychostimulant-like and hallucinogen-like effects; thus, MDAI may have similar abuse potential as MDMA. 5. Nichols (1986) "Synthesis and Evaluation of 2,3- Dihydrobenzofuran Analogues of the Hallucinogen 1-(2,5- Dimethoxy-4methylphenyl)-2-aminopropane: Drug Discrimination Studies in Rats" Vol. 29 (2): 302-304. From page 304, paragraph 2: "This is all the more difficult to explain in light of the fact that 2-methoxy-4,5- (methylenedioxy)amphetamine (8; MMDA-2) is active $H_{3}C \downarrow NH_{2}$
From the application of interest's priority document DE 10 2020 123 793.6 (filed 11 September 2020): From claim 1: "1. 3,4-methylenedioxy-amphetamine peptide according to general formula I: r_{R_4} (Formel I) where R1 is selected from the group consisting of:

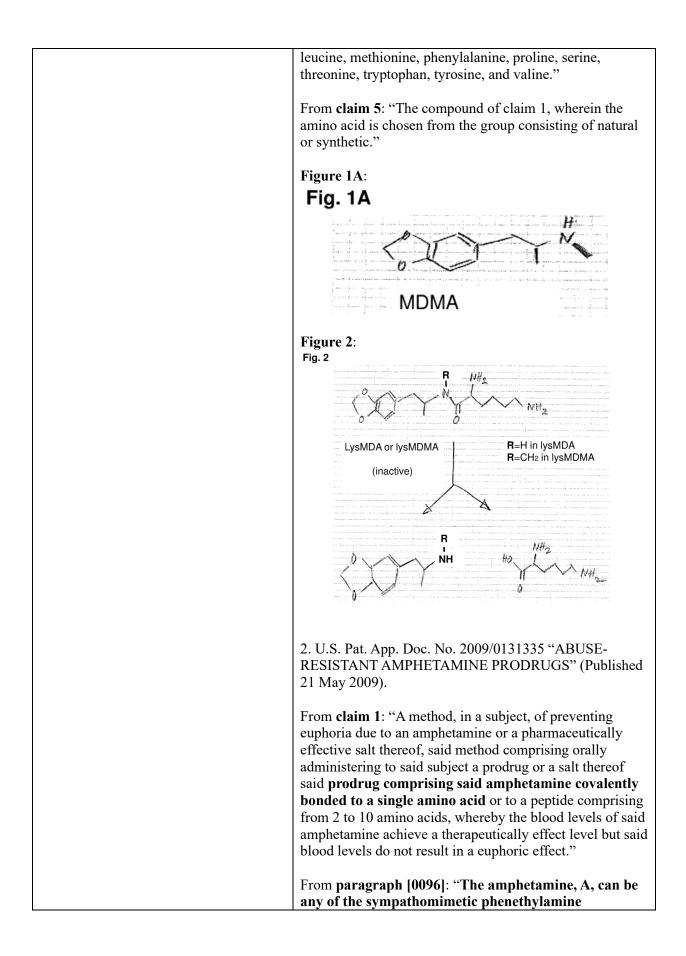


trimethoxyamphetamine, and 3,4- methylenedioxymethamphetamine"
 From paragraph [0107]: "Each amino acid can be any one of the L- or D-enantiomers, preferably L-enantiomers, of the naturally occurring amino acids: alanine (Ala or A), arginine (Arg or R), asparagine (Asn or N), aspartic acid (Asp or D), cysteine (Cys or C), glycine (Gly or G), glutamic acid (Glu or E), glutamine (Gln or Q), histidine (His or H), isoleucine (Ile or I), leucine (Leu or L), lysine (Lys or K), methionine (Met or M), proline (Pro or P), phenylalanine (Phe or F), serine (Ser or S), tryptophan (Trp or W), threonine (Thr or T), tyrosine (Tyr or Y), and valine (Val or V)" MAZUR (1970) "Structure-taste relation of aspartic acid amides" J. Med. Chem. Vol 13(6): 1217-1221.

 Tab	le 2 (entry 64):					
	,		ars II			
No.	X		ACID AMIDES sp-X" Mp, "C	alt, deg	Formula	Taste
50 51	HNCH(CH ₃)CH ₂ C ₆ H ₅ ; L- HNCH(CH ₃)CH ₂ C ₆ H ₅ ; D-	88 AC 98 AC	197–198 W 222–225 E. W	- 12 M + 14 W	$C_{13}H_{15}N_2O_3$ $C_{13}H_{16}N_2O_3$	50 0
52 53	HNCH(CH ₄)CH ₂ C ₄ H ₅ ⁶ HNCH ₂ CH ₂ C ₄ H ₅	79 M 70 AC	164-166 A-W 212-214 P-W	+ 34 M - 15 W	$C_{14}H_{20}N_4O_3$ $C_{12}H_{16}N_4O_3$	-
54 55	$HNCH(C_2H_3)CH_2C_6H_3$ $HNC(CH_3)_2CH_2C_6H_3$	91 AC 96 AC	158~163 MET 159-161 W	+8 M ~16 M	$C_{14}H_{26}N_2O_3 + 0$, 25H ₂ O $C_{14}H_{26}N_2O_3$	5 20
56		91 M	223-224 M-W	-6 II	$C_{11}H_{16}N_2O_2$	10
	CH:			0.11	< 111111-120-1	
57 58	HNCHCHC ₆ H ₃ ; t- HNCH ₂ CH(CH ₃)C ₆ H,	95 M 70 AC	175-178 182-188 W	+5 M -20 W	$C_{14}H_{18}N_2O_8 \cdot H_2O$ $C_{12}H_{18}N_2O_4$	
59 60	N(CH ₂)CH(CH ₈)CH ₂ C ₆ H ₅ ; 1	84 M	164-166 185-187	+47 W +12 W	$C_{14}H_{20}N_2O_1 \cdot 0.5H_2O$	
61	$N(CH_3)CH(CH_3)CH_2C_6H_3$; D- HNCH(CH_3)CH_2CH_2C_6H_3	82 M 95 AC	190-196 MW	+16 H	$C_{14}H_{20}N_2O_2 \cdot 0.5H_2O$ $C_{14}H_{20}N_2O_3$	5
62 63	HNCH(CH ₄)CH ₂ OC ₆ H ₂ HNCH ₂ CH ₂ OC ₆ H ₂	68 M 85 AC	180~184 M=W 184-185 W	+11 H -13 H	C ₁₂ H ₁₈ N ₂ O ₄ C ₁₂ H ₁₆ N ₂ O ₄	10 ÷
64 65	$HNCH(CH_3)CH_2C_4H_3(OCH_2O)-3_74$ $HNCH(CH_2OH)CH_2C_4H_5;$ 1	95 M 95 AC	189–192 237–238 W	+6 M -26 AC	$C_{14}H_{18}N_2O_5$ $C_{13}H_{18}N_2O_4$	
66 67	HNCH(CH ₃)CH(OH)C ₈ H; HNCH(CH ₃)CH ₇ C ₆ H ₄ OH-4	98 M 95 M	188-190 M 160-185	+ 10 M + 5 W	$C_{11}H_1 N_2O_4 \cdot 0.5 H_2O_1 C_{10}H_1 N_2O_4$	+
68 69	HNCH ₂ CH ₂ C ₄ H ₄ OH-4 HNCH(CH ₂ OH)CH ₂ C ₈ H ₄ OH-4; 1	72 AC 44 M	209~210 W 212~213 M	21 W 10 H	$C_{12}H_{18}N_2O_4$ $C_{18}H_{18}N_2O_4$	+
70	HNCH(CH ₃)CH ₂ C ₆ H ₄ NHSO ₂ CH ₁ -4; 1	96 M	199-208 W	+14.11	$C_{14}H_{41}N_8O_5S$	
71 72	$HNCH(CH_3)CH_2C_6H_4F-4$ $HNCH_2CH_2C_4H_4F-4$	87 M 74 M	203-209 M-ET 208-209 W	+9 H −6 M	$C_{12}H_{17}FN_2O_3$ $C_{12}H_{15}FN_2O_3$	20 5
73	HNCH(CH.)CH2	85 M	168-180 M-ET	+6 H	$C_{11}H_{16}N_2O_4{\cdot}0.333H_2O$	10
74	HNCH,CH, L	71 M	195-196 M	- 17 M	$\mathrm{C}_{10}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}_{1}$	+
75	HNCH/CH_/CH_	96 AC	203-205 M	- 22 M	$C_{45}H_{19}N_4O_3$	
76	HNCH(CH ₃)CH ₂ -e-C ₆ H ₁₁ ; 1	84 AC	184-185 M-W	- 19 M	$\mathrm{C}_{13}\mathrm{H}_{13}\mathrm{N}_{2}\mathrm{O}_{3}$	50
77 78	$HNCH(CH_0)CH_{2*}c_*C_6H_{11}; D=$ $HNCH_2CH_{2*}c_*C_8H_{11}$	60 M 94 AC	207-208 M-W 193-202 M-W	$^{+16}_{+7}$ M +7 AC	$C_{13}H_{24}N_2O_3$ $C_{13}H_{22}N_2O_3$	5 10
79 80	$N(CH_3)CH(CH_4)CH_{2^*}c^*C_6H_{11}$; 1 $N(CH_3)CH(CH_4)CH_{2^*}c^*C_6H_{11}$; 1	78 M 64 M	179–180 P–ET 194–196	- 14 W +1 W	CuH28N2O1+0.25H2O CuH28N2O2	
81 82	HN-e-C ₆ H ₁₁ HNCH(CH ₃)CH ₂ CH ₂ CH ₃	91 M 92 M	224–225 W 190–194 A W	+16 H +9 AC	$C_{10}H_{18}N_2O_3$ $C_5H_{18}N_2O_4 \cdot 0.5H_2O$	 0
83	HN(CH ₂) ₃ CH(CH ₄)CH ₃	89 M	222223 MW		$C_{10}H_{20}N_2O_3$	0
84 85	$HNCH(CH_3)CH_2CH(CH_3)CH_3; 1_{*}$ $HNCH(CH_3)CH_2CH(CH_3)CH_3; 0_{*}$	91 AC 92 AC	166–168 W 201–202 W	−17 M +9 M	$C_{10}H_{20}N_2O_3 \cdot 0$, $5H_2O$ $C_{10}H_{20}N_2O_3 \cdot 0$, $25H_2O$	
86 87	$HNCH(C_2H_3)CH_2CH_2CH_3$ $HN(CH_2)_3CH_3$	93 M 88 M	196-200 AW 200-201 W	+12 AC +9 AC	C ₁₈ H ₂₈ N ₂ O ₃ , H ₂ O C ₁₈ H ₂₈ N ₂ O ₃ , 0, 25H ₂ O	
88 89	HNCH(CH ₄) ₄ CH ₄ HN(CH ₄) ₆ CH ₄	98 M 89 M	188 -193 A -W 200-201 W	+11 AC +8 AC	$C_{10}H_{20}N_2O_3 \cdot 0.5H_2O$ $C_{11}H_{22}N_2O_3 \cdot 0.25H_2O$	30 +
90 91	HNCH(CH ₃)(CH ₂) ₄ CH ₂	95 M	190~194	± 7 AC	$C_{11}H_{22}N_2O_3$	20 +
92	$HNCH(CH_3)CH_2CH(CH_3)CH_2CH_2$ $HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3$	94 M 94 M	162–166 W 184–188 A–W	-2 M +9 AC	$C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$ $C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$	50
93 94	$HNCH(C_2H_5)(CH_2)_3CH_3$ $HNCH(CH_3)(CH_2)_4CH_3;$ 1	98 M 94 M	190–195 187–189 W	+9 AC 5 M	$C_{11}H_{22}N_2O_3 \cdot 0$, 5H ₂ O $C_{12}H_{22}N_2O_3$, H ₂ O	4: 50
95 96	$HNCH(CH_3)(CH_2)_4CH_3; L^d$ $HNCH(CH_3)(CH_2)_4CH_3; D$	97 M 96 M	213-214 M-W 217-218 M-W	-5 M +5 M	$C_{11}H_{22}N_2O_3 + 05H_2O_3$ $C_{11}H_{22}N_2O_3$	
97 98	$HNCH(CH_3)(CH_2)_4CH_3; D^d$ $HNCH(CH_2)CH_2CH_2CH(CH_2)CH_3; L-$	97 M 84 M	189–192 W 187–190 W	$^{+6}_{+23}$ H	$C_{15}H_{22}N_2O_3$ $C_{13}H_{22}N_2O_3 + 0.5H_2O$	100
99 100	$HNCH(CH_8)CH_2CH_2CH(CH_8)CH_8; \ L^d$	99 M	215-216 M-W	+2 M -3 M	C_1 ; H_2 ; N_2 O ₃	0
101	$HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3; D-HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3; D^4$	96 M 91 M	210–213 M–W 192–195 W	-26 H	$C_{11}H_{12}N_2O_3 \cdot 0.5H_2O$ $C_{11}H_{12}N_2O_3 \cdot 0.25H_2O$	+
102 103	HNCH(CH ₃)CH ₂ CH ₂ OCH ₂ CH ₃ HNCH(CH ₂)(CH ₂) ₃ CH ₃	77 M 85 M	166-170 M-ET 180-190	+3 M -8 M	$C_{10}H_{20}N_2O_4 \cdot 0.25H_2O \\ C_{12}H_{21}N_2O_3 \cdot 0.5H_2O$	10 10
⁴ See T ⁴ The ami	able I for abbreviations and explanations. de was derived from p-Asp. * All compound	^b The amies were analy	de was derived from zed for C, H, N.	i t-Glu. ≃Tl	he amide was deri ve d from	ntsAsp.
plac	atch (2016) "Locor e conditioning effer macology, Vol 27 (cts of	f MDAI i		,	
From abstract : "5,6-Methylenedioxy-2-aminoindane (MDAI) has become a common substitute for (\pm) -3,4- methylenedioxymethamphetamine (MDMA) in Ecstasy. MDAI is known to produce MDMA-like discriminative stimulus effects , but it is not known whether MDAI has psychostimulant or hallucinogen-like effects. MDAI was tested for locomotor stimulant effects in mice and subsequently for discriminative stimulus effects in rats trained to discriminate cocaine (10 mg/kg, intraperitoneally), methamphetamine (1 mg/kg, intraperitoneally),						
	peritoneally), ±MI -)-2,5-dimethoxy-4		· –	-	-	• /

(0.5 mg/kg, intraperitoneally) from salineMDAI fully
substituted for the discriminative stimulus effects of $MDMA(25mg/lpg)()$ 2.5 dimetherms 4
MDMA (2.5 mg/kg), (-)-2,5-dimethoxy-4- methylamphetamine hydrochloride (5 mg/kg), and cocaine
(7.5 mg/kg), but produced only 73% methamphetamine-
appropriate responding at a dose that suppressed
responding (7.5 mg/kg). MDAI produced tremors at
10 mg/kg in one methamphetamine-trained rat. MDAI
produced conditioned place preference from 0.3 to 10 mg/kg. The effects of MDAI on locomotor activity
and drug discrimination were similar to those
produced by MDMA, having both psychostimulant-like
and hallucinogen-like effects; thus, MDAI may have
similar abuse potential as MDMA.
5. Nichols (1986) "Synthesis and Evaluation of 2,3-
Dihydrobenzofuran Analogues of the Hallucinogen 1-(2,5-
Dimethoxy-4methylphenyl)-2-aminopropane: Drug Discrimination Studies in Rats" Vol. 29 (2): 302-304.
Discrimination Studies in Rats Vol. 29 (2): 502-504.
From page 304, paragraph 2: "This is all the more
difficult to explain in light of the fact that 2-methoxy-4,5- (methylenedioxy)amphetamine (8; MMDA-2) is active
(incurve control of the second secon
0-1-1-1
O OCH3
8
and produces clear central effects at an oral dosage of 25
mg of the hydrochloride"
6. Bahji (2019) "Efficacy of 3,4-
methylenedioxymethamphetamine (MDMA)-assisted
psychotherapy for posttraumatic stress disorder: A
systematic review and meta-analysis" Progress in Neuropsychopharmacology & Biological Psychiatry, Vol.
96, 109735.
From page 8, conclusions: "We systematically reviewed
and meta-analyzed randomized and quasi-randomized
controlled trials measuring the effectiveness and safety
MDMA-assisted psychotherapy for treating chronic,
treatment-refractory PTSD. We identified five moderate-
quality trials demonstrating that MDMA-assisted psychotherapy was associated with significant
improvements in PTSD symptoms following intervention
that extended long-term with few reported adverse effects.
Taken together, our synthesis suggests that MDMA-
assisted psychotherapy is a potentially safe, effective,

	and durable treatment for individuals with treatment- refractory PTSD."
15. The method of claim 14, wherein said disease/disorder is an anxiety disorder, attention deficit hyperactivity disorder	From the application of interest's priority document DE 10 2020 123 793.6 (filed 11 September 2020):
(ADHD), posttraumatic stress disorder (PTSD), depression, cluster headache, ca condition associated with cancer,	From claim 1 : "1. 3,4-methylenedioxy-amphetamine peptide according to general formula I:
diminished drive, burn-out, bore-out, migraine, Parkinson's disease, pulmonary hypertension, schizophrenia, an eating	
disorder, nausea, or vomiting.	where R1 is selected from the group consisting of:
	und NH2
	where R2 is selected from the group consisting of: -H or -CH3.
	where R3 is selected from the group consisting of: -CH3 or -CH2-R4
	where R4 is selected from the group consisting of: -H, -OCH3, or R3-CH2-
	1. US Priority Doc. No. 63/115,245 of US Pat. Doc. No. 17/518,846 "MDMA PRODRUGS TO ASSIST PSYCHOTHERAPY" (Priority doc filed 18 November 2020).
	From claim 1 : "A compound comprising a prodrug including a psychoactive base substance attached to an amino acid."
	From claim 3 : "The compound of claim 2, wherein the MDMA or MDMA-like substance is chosen from the group consisting of MDAMDAImixed dopaminergic-serotonergic amphetamine and their N-alkylated analogs"
	From claim 4 : "The compound of claim 1, wherein said amino acid is chosen from the group consisting of lysine, alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine,



derivatives which have central nervous system
stimulant activity such as amphetamine, or any
derivative, analog, or salt thereof. Exemplary
amphetamines include, but are not limited to,
amphetamine, methamphetamine, methylphenidate, p-
methoxyamphetamine, methylenedioxyamphetamine,
2,5-dimethoxy-4-methylamphetamine, 2,4,5-
trimethoxyamphetamine, and 3,4-
methylenedioxymethamphetamine"
From paragraph [0107] : "Each amino acid can be any
one of the L- or D-enantiomers, preferably L-enantiomers,
of the naturally occurring amino acids: alanine (Ala or A),
arginine (Arg or R), asparagine (Asn or N), aspartic acid
(Asp or D), cysteine (Cys or C), glycine (Gly or G),
glutamic acid (Glu or E), glutamine (Gln or Q), histidine
(His or H), isoleucine (Ile or I), leucine (Leu or L), lysine
(Lys or K), methionine (Met or M), proline (Pro or P),
phenylalanine (Phe or F), serine (Ser or S), tryptophan
(Trp or W), threonine (Thr or T), tyrosine (Tyr or Y), and
valine (Val or V)"
3. MAZUR (1970) "Structure-taste relation of aspartic acid
amides" J. Med. Chem. Vol 13(6): 1217-1221.

 Tab	le 2 (entry 64):					
	,		ars II			
No.	X		ACID AMIDES sp-X" Mp, "C	alt, deg	Formula	Taste
50 51	HNCH(CH ₃)CH ₂ C ₆ H ₅ ; L- HNCH(CH ₃)CH ₂ C ₆ H ₅ ; D-	88 AC 98 AC	197–198 W 222–225 E. W	- 12 M + 14 W	$C_{13}H_{15}N_2O_3$ $C_{13}H_{16}N_2O_3$	50 0
52 53	HNCH(CH ₄)CH ₂ C ₄ H ₅ ⁶ HNCH ₂ CH ₂ C ₄ H ₅	79 M 70 AC	164-166 A-W 212-214 P-W	+ 34 M - 15 W	$C_{14}H_{20}N_4O_3$ $C_{12}H_{16}N_4O_3$	-
54 55	$HNCH(C_2H_3)CH_2C_6H_3$ $HNC(CH_3)_2CH_2C_6H_3$	91 AC 96 AC	158~163 MET 159-161 W	+8 M ~16 M	$C_{14}H_{26}N_2O_3 + 0$, 25H ₂ O $C_{14}H_{26}N_2O_3$	5 20
56		91 M	223-224 M-W	-6 II	$C_{11}H_{16}N_2O_2$	10
	CH:			0.11	< 111111-120-1	
57 58	HNCHCHC ₆ H ₃ ; t- HNCH ₂ CH(CH ₃)C ₆ H,	95 M 70 AC	175-178 182-188 W	+5 M -20 W	$C_{14}H_{18}N_2O_8 \cdot H_2O$ $C_{12}H_{18}N_2O_4$	
59 60	N(CH ₂)CH(CH ₈)CH ₂ C ₆ H ₅ ; 1	84 M	164-166 185-187	+47 W +12 W	$C_{14}H_{20}N_2O_1 \cdot 0.5H_2O$	
61	$N(CH_3)CH(CH_3)CH_2C_6H_3$; D- HNCH(CH_3)CH_2CH_2C_6H_3	82 M 95 AC	190-196 MW	+16 H	$C_{14}H_{20}N_2O_2 \cdot 0.5H_2O$ $C_{14}H_{20}N_2O_3$	5
62 63	HNCH(CH ₄)CH ₂ OC ₆ H ₂ HNCH ₂ CH ₂ OC ₆ H ₂	68 M 85 AC	180~184 M=W 184-185 W	+11 H -13 H	C ₁₂ H ₁₈ N ₂ O ₄ C ₁₂ H ₁₆ N ₂ O ₄	10 ÷
64 65	$HNCH(CH_3)CH_2C_4H_3(OCH_2O)-3_14$ $HNCH(CH_2OH)CH_2C_4H_5;$ 1	95 M 95 AC	189–192 237–238 W	+6 M -26 AC	$C_{14}H_{18}N_2O_5$ $C_{13}H_{18}N_2O_4$	
66 67	HNCH(CH ₃)CH(OH)C ₈ H; HNCH(CH ₃)CH ₇ C ₆ H ₄ OH-4	98 M 95 M	188-190 M 160-185	+ 10 M + 5 W	$C_{11}H_1 N_2O_4 \cdot 0.5 H_2O_1 C_{10}H_1 N_2O_4$	+
68 69	HNCH ₂ CH ₂ C ₄ H ₄ OH-4 HNCH(CH ₂ OH)CH ₂ C ₈ H ₄ OH-4; 1	72 AC 44 M	209~210 W 212~213 M	21 W 10 H	$C_{12}H_{18}N_2O_4$ $C_{18}H_{18}N_2O_4$	+
70	HNCH(CH ₃)CH ₂ C ₆ H ₄ NHSO ₂ CH ₁ -4; 1	96 M	199-208 W	+14.11	$C_{14}H_{41}N_8O_5S$	
71 72	$HNCH(CH_3)CH_2C_6H_4F-4$ $HNCH_2CH_2C_4H_4F-4$	87 M 74 M	203-209 M-ET 208-209 W	+9 H −6 M	$C_{12}H_{17}FN_2O_3$ $C_{12}H_{15}FN_2O_3$	20 5
73	HNCH(CH.)CH2	85 M	168-180 M-ET	+6 H	$C_{11}H_{16}N_2O_4{\cdot}0.333H_2O$	10
74	HNCH,CH, L	71 M	195-196 M	- 17 M	$\mathrm{C}_{10}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}_{1}$	+
75	HNCH/CH_/CH_	96 AC	203-205 M	- 22 M	$C_{45}H_{19}N_4O_3$	
76	HNCH(CH ₃)CH ₂ -e-C ₆ H ₁₁ ; 1	84 AC	184-185 M-W	- 19 M	$C_{13}H_{13}N_2O_3$	50
77 78	$HNCH(CH_0)CH_{2*}c_*C_6H_{11}; D=$ $HNCH_2CH_{2*}c_*C_8H_{11}$	60 M 94 AC	207-208 M-W 193-202 M-W	$^{+16}_{+7}$ M +7 AC	$C_{13}H_{24}N_2O_3$ $C_{13}H_{22}N_2O_3$	5 10
79 80	$N(CH_3)CH(CH_4)CH_{2^*}c^*C_6H_{11}$; 1 $N(CH_3)CH(CH_4)CH_{2^*}c^*C_6H_{11}$; 1	78 M 64 M	179–180 P–ET 194–196	- 14 W +1 W	CuH28N2O1+0.25H2O CuH28N2O2	
81 82	HN-e-C ₆ H ₁₁ HNCH(CH ₃)CH ₂ CH ₂ CH ₃	91 M 92 M	224–225 W 190–194 A W	+16 H +9 AC	$C_{10}H_{18}N_2O_3$ $C_5H_{18}N_2O_4 \cdot 0.5H_2O$	 0
83	HN(CH ₂) ₃ CH(CH ₄)CH ₃	89 M	222223 MW		$C_{10}H_{20}N_2O_3$	0
84 85	$HNCH(CH_3)CH_2CH(CH_3)CH_3; 1_{*}$ $HNCH(CH_3)CH_2CH(CH_3)CH_3; 0_{*}$	91 AC 92 AC	166–168 W 201–202 W	−17 M +9 M	$C_{10}H_{20}N_2O_3 \cdot 0$, $5H_2O$ $C_{10}H_{20}N_2O_3 \cdot 0$, $25H_2O$	
86 87	$HNCH(C_2H_3)CH_2CH_2CH_3$ $HN(CH_2)_3CH_3$	93 M 88 M	196-200 AW 200-201 W	+12 AC +9 AC	C ₁₈ H ₂₈ N ₂ O ₃ , H ₂ O C ₁₈ H ₂₈ N ₂ O ₃ , 0, 25H ₂ O	
88 89	HNCH(CH ₄) ₄ CH ₄ HN(CH ₄) ₆ CH ₄	98 M 89 M	188 -193 A -W 200-201 W	+11 AC +8 AC	$C_{10}H_{20}N_2O_3 \cdot 0.5H_2O$ $C_{11}H_{22}N_2O_3 \cdot 0.25H_2O$	30 +
90 91	HNCH(CH ₃)(CH ₂) ₄ CH ₂	95 M	190~194	± 7 AC	$C_{11}H_{22}N_2O_3$	20 +
92	$HNCH(CH_3)CH_2CH(CH_3)CH_2CH_2$ $HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3$	94 M 94 M	162–166 W 184–188 A–W	-2 M +9 AC	$C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$ $C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$	50
93 94	$HNCH(C_2H_5)(CH_2)_3CH_3$ $HNCH(CH_3)(CH_2)_4CH_3;$ 1	98 M 94 M	190–195 187–189 W	+9 AC 5 M	$C_{11}H_{22}N_2O_3 \cdot 0$, 5H ₂ O $C_{12}H_{22}N_2O_3$, H ₂ O	4: 50
95 96	$HNCH(CH_3)(CH_2)_4CH_3; L^d$ $HNCH(CH_3)(CH_2)_4CH_3; D$	97 M 96 M	213-214 M-W 217-218 M-W	-5 M +5 M	$C_{11}H_{22}N_2O_3 + 05H_2O_3$ $C_{11}H_{22}N_2O_3$	
97 98	$HNCH(CH_3)(CH_2)_4CH_3; D^d$ $HNCH(CH_2)CH_2CH_2CH(CH_2)CH_3; L-$	97 M 84 M	189–192 W 187–190 W	$^{+6}_{+23}$ H	$C_{15}H_{22}N_2O_3$ $C_{13}H_{22}N_2O_3 + 0.5H_2O$	100
99 100	$HNCH(CH_8)CH_2CH_2CH(CH_8)CH_8; \ L^d$	99 M	215-216 M-W	+2 M -3 M	C_1 ; H_2 ; N_2 O ₃	0
101	$HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3; D-HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3; D^4$	96 M 91 M	210–213 M–W 192–195 W	-26 H	$C_{11}H_{12}N_2O_3 \cdot 0.5H_2O$ $C_{11}H_{12}N_2O_3 \cdot 0.25H_2O$	+
102 103	HNCH(CH ₃)CH ₂ CH ₂ OCH ₂ CH ₃ HNCH(CH ₂)(CH ₂) ₃ CH ₃	77 M 85 M	166-170 M-ET 180-190	+3 M -8 M	$C_{10}H_{20}N_2O_4 \cdot 0.25H_2O \\ C_{12}H_{21}N_2O_3 \cdot 0.5H_2O$	10 10
⁴ See T ⁴ The ami	able I for abbreviations and explanations. de was derived from p-Asp. * All compound	^b The amies were analy	de was derived from zed for C, H, N.	i t-Glu. ≃Tl	he amide was deri ve d from	ntsAsp.
plac	atch (2016) "Locor e conditioning effer macology, Vol 27 (cts of	f MDAI i		,	
From abstract : "5,6-Methylenedioxy-2-aminoindane (MDAI) has become a common substitute for (\pm) -3,4- methylenedioxymethamphetamine (MDMA) in Ecstasy. MDAI is known to produce MDMA-like discriminative stimulus effects , but it is not known whether MDAI has psychostimulant or hallucinogen-like effects. MDAI was tested for locomotor stimulant effects in mice and subsequently for discriminative stimulus effects in rats trained to discriminate cocaine (10 mg/kg, intraperitoneally), methamphetamine (1 mg/kg, intraperitoneally),						
	peritoneally), ±MI -)-2,5-dimethoxy-4		· –	-	-	• /

(0.5 mg/kg, intraperitoneally) from salineMDAI fully
substituted for the discriminative stimulus effects of $MDMA(25mg/lpg)()$ 2.5 dimetherms 4
MDMA (2.5 mg/kg), (-)-2,5-dimethoxy-4- methylamphetamine hydrochloride (5 mg/kg), and cocaine
(7.5 mg/kg), but produced only 73% methamphetamine-
appropriate responding at a dose that suppressed
responding (7.5 mg/kg). MDAI produced tremors at
10 mg/kg in one methamphetamine-trained rat. MDAI
produced conditioned place preference from 0.3 to 10 mg/kg. The effects of MDAI on locomotor activity
and drug discrimination were similar to those
produced by MDMA, having both psychostimulant-like
and hallucinogen-like effects; thus, MDAI may have
similar abuse potential as MDMA.
5. Nichols (1986) "Synthesis and Evaluation of 2,3-
Dihydrobenzofuran Analogues of the Hallucinogen 1-(2,5-
Dimethoxy-4methylphenyl)-2-aminopropane: Drug Discrimination Studies in Rats" Vol. 29 (2): 302-304.
Discrimination Studies in Rats Vol. 29 (2): 502-504.
From page 304, paragraph 2: "This is all the more
difficult to explain in light of the fact that 2-methoxy-4,5- (methylenedioxy)amphetamine (8; MMDA-2) is active
(incurve control of the second secon
0-1-1-1
O OCH3
8
and produces clear central effects at an oral dosage of 25
mg of the hydrochloride"
6. Bahji (2019) "Efficacy of 3,4-
methylenedioxymethamphetamine (MDMA)-assisted
psychotherapy for posttraumatic stress disorder: A
systematic review and meta-analysis" Progress in Neuropsychopharmacology & Biological Psychiatry, Vol.
96, 109735.
From page 8, conclusions: "We systematically reviewed
and meta-analyzed randomized and quasi-randomized
controlled trials measuring the effectiveness and safety
MDMA-assisted psychotherapy for treating chronic,
treatment-refractory PTSD. We identified five moderate-
quality trials demonstrating that MDMA-assisted psychotherapy was associated with significant
improvements in PTSD symptoms following intervention
that extended long-term with few reported adverse effects.
Taken together, our synthesis suggests that MDMA-
assisted psychotherapy is a potentially safe, effective,

	and durable treatment for individuals with treatment- refractory PTSD."
16. A method for the production of a compound according to claim 1, comprising the steps of:	From the application of interest's priority document DE 10 2020 123 793.6 (filed 11 September 2020):
a. preparing a solution of a protected amino acid in solvent I;b. addition of an activating agent	From claim 1 : "1. 3,4-methylenedioxy-amphetamine peptide according to general formula I:
dissolved in solvent I under protectivegas atmosphere;c. stirring of the mixture under protective	
gas atmosphere for at least 2 hours at room temperature; e. stirring of the mixture under protective	where R1 is selected from the group consisting of: $\downarrow \downarrow $
gas atmosphere for at least 2 hours at room temperature; f. stopping the reaction by adding 2% ammonia solution;	
g1. Concentration of the solvent I; g2. Dissolving the residue in solvent II; h. extraction with 1M HCl, water and saturated saline solution;	und NH ₂ NH
i. drying of the organic phase over a desiccant at 40-60°C and under vacuum;j. obtaining the crude product;k. purification of the crude product by	where R2 is selected from the group consisting of: -H or -CH3. where R3 is selected from the group consisting of:
recrystallization and/or column chromatography; l. obtaining the protected safrylamine	-CH3 or -CH2-R4 where R4 is selected from the group consisting of: -H, -OCH3, or R3-CH2-
 peptide; m. deprotection of the protected safrylamine peptide; n. purification of the safrylamine peptide by means of column chromatography; o. obtaining the safrylamine peptide 	1. US Priority Doc. No. 63/115,245 of US Pat. Doc. No. 17/518,846 "MDMA PRODRUGS TO ASSIST PSYCHOTHERAPY" (Priority doc filed 18 November 2020).
	From claim 1 : "A compound comprising a prodrug including a psychoactive base substance attached to an amino acid."
	From claim 3 : "The compound of claim 2, wherein the MDMA or MDMA-like substance is chosen from the group consisting of MDAMDAImixed dopaminergic-serotonergic amphetamine and their N-alkylated analogs"
	From claim 4 : "The compound of claim 1, wherein said amino acid is chosen from the group consisting of lysine, alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine,

derivatives which have central nervous system
stimulant activity such as amphetamine, or any
derivative, analog, or salt thereof. Exemplary
amphetamines include, but are not limited to,
amphetamine, methamphetamine, methylphenidate, p-
methoxyamphetamine, methylenedioxyamphetamine,
2,5-dimethoxy-4-methylamphetamine, 2,4,5-
trimethoxyamphetamine, and 3,4-
methylenedioxymethamphetamine"
From paragraph [0107] : "Each amino acid can be any
one of the L- or D-enantiomers, preferably L-enantiomers,
of the naturally occurring amino acids: alanine (Ala or A),
arginine (Arg or R), asparagine (Asn or N), aspartic acid
(Asp or D), cysteine (Cys or C), glycine (Gly or G),
glutamic acid (Glu or E), glutamine (Gln or Q), histidine
(His or H), isoleucine (Ile or I), leucine (Leu or L), lysine
(Lys or K), methionine (Met or M), proline (Pro or P),
phenylalanine (Phe or F), serine (Ser or S), tryptophan
(Trp or W), threonine (Thr or T), tyrosine (Tyr or Y), and
valine (Val or V)"
3. MAZUR (1970) "Structure-taste relation of aspartic acid
amides" J. Med. Chem. Vol 13(6): 1217-1221.

 Tab	le 2 (entry 64):					
	,		ars II			
No.	X		ACID AMIDES sp-X" Mp, "C	alt, deg	Formula	Taste
50 51	HNCH(CH ₃)CH ₂ C ₆ H ₅ ; L- HNCH(CH ₃)CH ₂ C ₆ H ₅ ; D-	88 AC 98 AC	197–198 W 222-225 EW	- 12 M + 14 W	$C_{13}H_{15}N_2O_3$ $C_{13}H_{16}N_2O_3$	50 0
52 53	HNCH(CH ₄)CH ₂ C ₄ H ₅ ⁶ HNCH ₂ CH ₂ C ₄ H ₅	79 M 70 AC	164-166 A-W 212-214 P-W	+ 34 M - 15 W	$C_{14}H_{20}N_4O_3$ $C_{12}H_{16}N_4O_3$	-
54 55	$HNCH(C_2H_3)CH_2C_6H_3$ $HNC(CH_3)_2CH_2C_6H_3$	91 AC 96 AC	158~163 MET 159-161 W	+8 M ~16 M	$C_{14}H_{26}N_2O_3 + 0$, 25H ₂ O $C_{14}H_{26}N_2O_3$	5 20
56		91 M	223-224 M-W	-6 II	$C_{11}H_{16}N_2O_2$	10
	CH:			0.11	< 111111-120-1	
57 58	HNCHCHC ₆ H ₃ ; t- HNCH ₂ CH(CH ₃)C ₆ H,	95 M 70 AC	175-178 182-188 W	+5 M -20 W	$C_{14}H_{18}N_2O_8 \cdot H_2O$ $C_{12}H_{18}N_2O_4$	
59 60	N(CH ₂)CH(CH ₈)CH ₂ C ₆ H ₅ ; 1	84 M	164-166 185-187	+47 W +12 W	$C_{14}H_{20}N_2O_1 \cdot 0.5H_2O$	
61	$N(CH_3)CH(CH_3)CH_2C_6H_3$; D- HNCH(CH_3)CH_2CH_2C_6H_3	82 M 95 AC	190-196 MW	+16 H	$C_{14}H_{20}N_2O_2 \cdot 0.5H_2O$ $C_{14}H_{20}N_2O_3$	5
62 63	HNCH(CH ₄)CH ₂ OC ₆ H ₂ HNCH ₂ CH ₂ OC ₆ H ₂	68 M 85 AC	180~184 M=W 184-185 W	+11 H -13 H	C ₁₂ H ₁₈ N ₂ O ₄ C ₁₂ H ₁₆ N ₂ O ₄	10 ÷
64 65	$HNCH(CH_3)CH_2C_4H_3(OCH_2O)-3_14$ $HNCH(CH_2OH)CH_2C_4H_5;$ 1	95 M 95 AC	189–192 237–238 W	+6 M -26 AC	$C_{14}H_{18}N_2O_5$ $C_{13}H_{18}N_2O_4$	
66 67	HNCH(CH ₃)CH(OH)C ₈ H; HNCH(CH ₃)CH ₇ C ₆ H ₄ OH-4	98 M 95 M	188-190 M 160-185	+ 10 M + 5 W	$C_{11}H_1 N_2 O_4 \cdot 0.5 H_2 O_1 C_{10}H_1 N_2 O_4$	+
68 69	HNCH ₂ CH ₂ C ₄ H ₄ OH-4 HNCH(CH ₂ OH)CH ₂ C ₈ H ₄ OH-4; 1	72 AC 44 M	209~210 W 212~213 M	21 W 10 H	$C_{12}H_{18}N_2O_4$ $C_{18}H_{18}N_2O_4$	+
70	HNCH(CH ₃)CH ₂ C ₆ H ₄ NHSO ₂ CH ₁ -4; 1	96 M	199-208 W	+14.11	$C_{14}H_{41}N_8O_5S$	
71 72	$HNCH(CH_3)CH_2C_6H_4F-4$ $HNCH_2CH_2C_4H_4F-4$	87 M 74 M	203-209 M-ET 208-209 W	+9 H −6 M	$C_{12}H_{17}FN_2O_3$ $C_{12}H_{15}FN_2O_3$	20 5
73	HNCH(CH.)CH2	85 M	168-180 M-ET	+6 H	$C_{11}H_{16}N_2O_4{\cdot}0.333H_2O$	10
74	HNCH,CH, L	71 M	195-196 M	- 17 M	$\mathrm{C}_{10}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}_{1}$	+
75	HNCH/CH_/CH_	96 AC	203-205 M	- 22 M	$C_{45}H_{19}N_4O_3$	
76	HNCH(CH ₃)CH ₂ -e-C ₆ H ₁₁ ; 1	84 AC	184-185 M-W	- 19 M	$C_{13}H_{13}N_2O_3$	50
77 78	$HNCH(CH_0)CH_{2*}c_*C_6H_{11}; D=$ $HNCH_2CH_{2*}c_*C_8H_{11}$	60 M 94 AC	207-208 M-W 193-202 M-W	$^{+16}_{+7}$ M +7 AC	$C_{13}H_{24}N_2O_3$ $C_{13}H_{22}N_2O_3$	5 10
79 80	$N(CH_3)CH(CH_4)CH_{2^*}c^*C_6H_{11}$; 1 $N(CH_3)CH(CH_4)CH_{2^*}c^*C_6H_{11}$; 1	78 M 64 M	179–180 P–ET 194–196	- 14 W +1 W	CuH28N2O1+0.25H2O CuH28N2O2	
81 82	HN-e-C ₆ H ₁₁ HNCH(CH ₃)CH ₂ CH ₂ CH ₃	91 M 92 M	224–225 W 190–194 A W	+16 H +9 AC	$C_{10}H_{18}N_2O_3$ $C_5H_{18}N_2O_4 \cdot 0.5H_2O$	 0
83	HN(CH ₂) ₃ CH(CH ₄)CH ₃	89 M	222223 MW		$C_{10}H_{20}N_2O_3$	0
84 85	$HNCH(CH_3)CH_2CH(CH_3)CH_3; 1_{*}$ $HNCH(CH_3)CH_2CH(CH_3)CH_3; 0_{*}$	91 AC 92 AC	166–168 W 201–202 W	−17 M +9 M	$C_{10}H_{20}N_2O_3 \cdot 0$, $5H_2O$ $C_{10}H_{20}N_2O_3 \cdot 0$, $25H_2O$	
86 87	$HNCH(C_2H_3)CH_2CH_2CH_3$ $HN(CH_2)_3CH_3$	93 M 88 M	196-200 AW 200-201 W	+12 AC +9 AC	C ₁₈ H ₂₈ N ₂ O ₃ , H ₂ O C ₁₈ H ₂₈ N ₂ O ₃ , 0, 25H ₂ O	
88 89	HNCH(CH ₄) ₄ CH ₄ HN(CH ₄) ₆ CH ₄	98 M 89 M	188 -193 A -W 200-201 W	+11 AC +8 AC	$C_{10}H_{20}N_2O_3 \cdot 0.5H_2O$ $C_{11}H_{22}N_2O_3 \cdot 0.25H_2O$	30 +
90 91	HNCH(CH ₃)(CH ₂) ₄ CH ₂	95 M	190~194	± 7 AC	$C_{11}H_{22}N_2O_3$	20 +
92	$HNCH(CH_3)CH_2CH(CH_3)CH_2CH_2$ $HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3$	94 M 94 M	162–166 W 184–188 A–W	-2 M +9 AC	$C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$ $C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$	50
93 94	$HNCH(C_2H_5)(CH_2)_3CH_3$ $HNCH(CH_3)(CH_2)_4CH_3;$ 1	98 M 94 M	190–195 187–189 W	+9 AC 5 M	$C_{11}H_{22}N_2O_3 \cdot 0$, 5H ₂ O $C_{12}H_{22}N_2O_3$, H ₂ O	4: 50
95 96	$HNCH(CH_3)(CH_2)_4CH_3; L^d$ $HNCH(CH_3)(CH_2)_4CH_3; D$	97 M 96 M	213-214 M-W 217-218 M-W	-5 M +5 M	$C_{11}H_{22}N_2O_3 + 05H_2O_3$ $C_{11}H_{22}N_2O_3$	
97 98	$HNCH(CH_3)(CH_2)_4CH_3; D^d$ $HNCH(CH_2)CH_2CH_2CH(CH_2)CH_3; L-$	97 M 84 M	189–192 W 187–190 W	$^{+6}_{+23}$ H	$C_{15}H_{22}N_2O_3$ $C_{13}H_{22}N_2O_3 + 0.5H_2O$	100
99 100	$HNCH(CH_8)CH_2CH_2CH(CH_8)CH_8; \ L^d$	99 M	215-216 M-W	+2 M -3 M	C_1 ; H_2 ; N_2 O ₃	0
101	$HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3; D-HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3; D^4$	96 M 91 M	210–213 M–W 192–195 W	-26 H	$C_{11}H_{12}N_2O_3 \cdot 0.5H_2O$ $C_{11}H_{12}N_2O_3 \cdot 0.25H_2O$	+
102 103	HNCH(CH ₃)CH ₂ CH ₂ OCH ₂ CH ₃ HNCH(CH ₂)(CH ₂) ₃ CH ₃	77 M 85 M	166-170 M-ET 180-190	+3 M -8 M	$C_{10}H_{20}N_2O_4 \cdot 0.25H_2O \\ C_{12}H_{21}N_2O_3 \cdot 0.5H_2O$	10 10
⁴ See T ⁴ The ami	able I for abbreviations and explanations. de was derived from p-Asp. * All compound	^b The amies were analy	de was derived from zed for C, H, N.	i t-Glu. ≃ Tl	he amide was deri ve d from	ntsAsp.
plac	atch (2016) "Locor e conditioning effer macology, Vol 27 (cts of	f MDAI i		,	
From abstract : "5,6-Methylenedioxy-2-aminoindane (MDAI) has become a common substitute for (\pm) -3,4- methylenedioxymethamphetamine (MDMA) in Ecstasy. MDAI is known to produce MDMA-like discriminative stimulus effects , but it is not known whether MDAI has psychostimulant or hallucinogen-like effects. MDAI was tested for locomotor stimulant effects in mice and subsequently for discriminative stimulus effects in rats trained to discriminate cocaine (10 mg/kg, intraperitoneally), methamphetamine (1 mg/kg, intraperitoneally),						
	peritoneally), ±MI -)-2,5-dimethoxy-4		· –	-	-	• /

(0.5 mg/kg, intraperitoneally) from salineMDAI fully substituted for the discriminative stimulus effects of MDMA (2.5 mg/kg), (-)-2,5-dimethoxy-4- methylamphetamine hydrochloride (5 mg/kg), and cocaine (7.5 mg/kg), but produced only 73% methamphetamine- appropriate responding at a dose that suppressed responding (7.5 mg/kg). MDAI produced tremors at 10 mg/kg in one methamphetamine-trained rat. MDAI produced conditioned place preference from 0.3 to 10 mg/kg. The effects of MDAI on locomotor activity and drug discrimination were similar to those produced by MDMA, having both psychostimulant-like and hallucinogen-like effects ; thus, MDAI may have similar abuse potential as MDMA.
5. Nichols (1986) "Synthesis and Evaluation of 2,3- Dihydrobenzofuran Analogues of the Hallucinogen 1-(2,5- Dimethoxy-4methylphenyl)-2-aminopropane: Drug Discrimination Studies in Rats" Vol. 29 (2): 302-304.
From page 304, paragraph 2 : "This is all the more difficult to explain in light of the fact that 2-methoxy-4,5-(methylenedioxy)amphetamine (8; MMDA-2) is active H_3C NH ₂
OCH3
and produces clear central effects at an oral dosage of 25 mg of the hydrochloride"
2. U.S. Pat. App. Doc. No. 2009/0131335 "ABUSE- RESISTANT AMPHETAMINE PRODRUGS" (Published 21 May 2009).
From paragraph [0173]: "To a solution of a protected amino acid succinimidyl ester (2.0 eq) in 1,4-dioxane (30 mL) was added d-amphetamine sulfate (1.0 eq) and NMM (4.0 eq). The resulting mixture was allowed to stir for 20 h at 20° C. Water (10 mL) was added, and the solution was stirred for 10 minutes prior to removing solvents under reduced pressure. The crude product was dissolved in EtOAc (100 mL) and washed with 2% AcOH aq (3×100 mL), saturated NaHCO3 solution (2×50 mL), and brine (1×100 mL). The organic extract was dried over MgSO4, filtered, and evaporated to dryness to afford the protected amino acid amphetamine conjugate. This intermediate was directly deprotected by adding 4 N HCl in 1,4-dioxane (20 mL). The solution was stirred for 20 h at 25° C. The

	solvent was evaporated, and the product dried in vacuum to afford the corresponding amino acid amphetamine hydrochloride conjugate."
17. The method of production according to claim 16, wherein: (i) the safrylamine is selected from the group consisting of 3,4-methylenedioxy- N-methylamphetamine (MDAA), 3,4- methylenedioxyamphetamine (MDA), 2- methoxy-4,5- methylenedioxy-2- aminoindane (MDAI); and/or (ii) the activating agent is selected from the group consisting of 1,1'- carbonyldiimidazole, triethylamine, diisopropylethylamine, pyridine and 4- dimethylaminopyridine, dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DCC), 1-ethyl- 3-(3-dimethylaminopropyl)carbodiimide (EDC), 1- [bis(dimethylamino)methylene]-1H- 1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU), and (benzotriazol-1- yloxy)tripyrrolidinophosphonium hexafluorophosphate (PyBOP), or a combination thereof; and/or (iii) the protected amino acid is selected from the group consisting of N-(9- fluorenylmethyloxycarbonyl)-L- tryptophan, N,N'-di-carbobenzoxy-L- lysine, 1-benzyl-N-carbobenzoxy-L- glutamate, N-carbobenzoxy-L- glutamate, N-carbobenzoxy-L- aspartate; and/or (iv) the solvent I is selected from the group consisting of tetrahydrofuran, 2- methyltetrahydrofuran, and dioxane; and/or (v) the solvent II is selected from the group consisting of diethylether, methyl- tert-butylether, chloroform, and dichloromethane, or a combination thereof; and/or	From the application of interest's priority document DE 10 2020 123 793.6 (filed 11 September 2020): From claim 1: "1. 3,4-methylenedioxy-amphetamine peptide according to general formula I: (+) + (+)
	amino acid is chosen from the group consisting of lysine,

(vi) the yield of the safrylamine peptide is at least 45 wt% relative to the starting materials.	 alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine." From claim 5: "The compound of claim 1, wherein the amino acid is chosen from the group consisting of natural or synthetic." Figure 1A: Fig. 1A
	MDMA
	Figure 2: Fig. 2 $f_{H} = \frac{M^{H_{2}}}{f_{H}} + \frac{M^{H_{2}}}{M^{H_{2}}} + \frac{M^{H_{2}}}{M^{H_{$
	 2. U.S. Pat. App. Doc. No. 2009/0131335 "ABUSE- RESISTANT AMPHETAMINE PRODRUGS" (Published 21 May 2009). From claim 1: "A method, in a subject, of preventing euphoria due to an amphetamine or a pharmaceutically effective salt thereof, said method comprising orally administering to said subject a prodrug or a salt thereof said prodrug comprising said amphetamine covalently bonded to a single amino acid or to a peptide comprising from 2 to 10 amino acids, whereby the blood levels of said amphetamine achieve a therapeutically effect level but said blood levels do not result in a euphoric effect."

From paragraph [0096]: "The amphetamine, A, can be any of the sympathomimetic phenethylamine derivatives which have central nervous system stimulant activity such as amphetamine, or any derivative, analog, or salt thereof. Exemplary amphetamines include, but are not limited to, amphetamine, methamphetamine, methylphenidate, p- methoxyamphetamine, methylenedioxyamphetamine, 2,5-dimethoxy-4-methylamphetamine, 2,4,5- trimethoxyamphetamine, and 3,4- methylenedioxymethamphetamine"
 From paragraph [0107]: "Each amino acid can be any one of the L- or D-enantiomers, preferably L-enantiomers, of the naturally occurring amino acids: alanine (Ala or A), arginine (Arg or R), asparagine (Asn or N), aspartic acid (Asp or D), cysteine (Cys or C), glycine (Gly or G), glutamic acid (Glu or E), glutamine (Gln or Q), histidine (His or H), isoleucine (Ile or I), leucine (Leu or L), lysine (Lys or K), methionine (Met or M), proline (Pro or P), phenylalanine (Phe or F), serine (Ser or S), tryptophan (Trp or W), threonine (Thr or T), tyrosine (Tyr or Y), and valine (Val or V)" MAZUR (1970) "Structure-taste relation of aspartic acid amides" J. Med. Chem. Vol 13(6): 1217-1221.

 Tab	le 2 (entry 64):					
	,		ars II			
No.	X		ACID AMIDES sp-X" Mp, "C	alt, deg	Formula	Taste
50 51	HNCH(CH ₃)CH ₂ C ₆ H ₅ ; L- HNCH(CH ₃)CH ₂ C ₆ H ₅ ; D-	88 AC 98 AC	197–198 W 222–225 E. W	- 12 M + 14 W	$C_{13}H_{15}N_2O_3$ $C_{13}H_{16}N_2O_3$	50 0
52 53	HNCH(CH ₄)CH ₂ C ₄ H ₅ ⁶ HNCH ₂ CH ₂ C ₄ H ₅	79 M 70 AC	164-166 A-W 212-214 P-W	+ 34 M - 15 W	$C_{14}H_{20}N_4O_3$ $C_{12}H_{16}N_4O_3$	-
54 55	$HNCH(C_2H_3)CH_2C_6H_3$ $HNC(CH_3)_2CH_2C_6H_3$	91 AC 96 AC	158~163 MET 159-161 W	+8 M ~16 M	$C_{14}H_{26}N_2O_3 + 0$, 25H ₂ O $C_{14}H_{26}N_2O_3$	5 20
56		91 M	223-224 M-W	-6 II	$C_{11}H_{16}N_2O_2$	10
	CH:			0.11	< 111111-120-1	
57 58	HNCHCHC ₆ H ₃ ; t- HNCH ₂ CH(CH ₃)C ₆ H,	95 M 70 AC	175-178 182-188 W	+5 M -20 W	$C_{14}H_{18}N_2O_8 \cdot H_2O$ $C_{12}H_{18}N_2O_4$	
59 60	N(CH ₂)CH(CH ₈)CH ₂ C ₆ H ₅ ; 1	84 M	164-166 185-187	+47 W +12 W	$C_{14}H_{20}N_2O_1 \cdot 0.5H_2O$	
61	$N(CH_3)CH(CH_3)CH_2C_6H_3$; D- HNCH(CH_3)CH_2CH_2C_6H_3	82 M 95 AC	190-196 MW	+16 H	$C_{14}H_{20}N_2O_2 \cdot 0.5H_2O$ $C_{14}H_{20}N_2O_3$	5
62 63	HNCH(CH ₄)CH ₂ OC ₆ H ₂ HNCH ₂ CH ₂ OC ₆ H ₂	68 M 85 AC	180~184 M=W 184-185 W	+11 H -13 H	C ₁₂ H ₁₈ N ₂ O ₄ C ₁₂ H ₁₆ N ₂ O ₄	10 +
64 65	$HNCH(CH_3)CH_2C_4H_3(OCH_2O)-3_74$ $HNCH(CH_2OH)CH_2C_4H_5;$ 1	95 M 95 AC	189–192 237–238 W	+6 M -26 AC	$C_{14}H_{18}N_2O_5$ $C_{13}H_{18}N_2O_4$	
66 67	HNCH(CH ₃)CH(OH)C ₈ H; HNCH(CH ₃)CH ₇ C ₆ H ₄ OH-4	98 M 95 M	188-190 M 160-185	+ 10 M + 5 W	$C_{11}H_1 N_2 O_4 \cdot 0.5 H_2 O_1 C_{10}H_1 N_2 O_4$	+
68 69	HNCH ₂ CH ₂ C ₄ H ₄ OH-4 HNCH(CH ₂ OH)CH ₂ C ₈ H ₄ OH-4; 1	72 AC 44 M	209~210 W 212~213 M	21 W 10 H	$C_{12}H_{18}N_2O_4$ $C_{18}H_{18}N_2O_4$	+
70	HNCH(CH ₃)CH ₂ C ₆ H ₄ NHSO ₂ CH ₁ -4; 1	96 M	199-208 W	+14.11	$C_{14}H_{41}N_8O_5S$	
71 72	$HNCH(CH_3)CH_2C_6H_4F-4$ $HNCH_2CH_2C_4H_4F-4$	87 M 74 M	203-209 M-ET 208-209 W	+9 H −6 M	$C_{12}H_{17}FN_2O_3$ $C_{12}H_{15}FN_2O_3$	20 5
73	HNCH(CH.)CH2	85 M	168-180 M-ET	+6 H	$C_{11}H_{16}N_2O_4{\cdot}0.333H_2O$	10
74	HNCH,CH, L	71 M	195-196 M	- 17 M	$\mathrm{C}_{10}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}_{1}$	+
75	HNCH/CH_/CH_	96 AC	203-205 M	- 22 M	$C_{45}H_{19}N_4O_3$	
76	HNCH(CH ₃)CH ₂ -e-C ₆ H ₁₁ ; 1	84 AC	184-185 M-W	- 19 M	$C_{13}H_{13}N_2O_3$	50
77 78	$HNCH(CH_0)CH_{2*}c_*C_6H_{11}; D=$ $HNCH_2CH_{2*}c_*C_8H_{11}$	60 M 94 AC	207-208 M-W 193-202 M-W	$^{+16}_{+7}$ M +7 AC	$C_{13}H_{24}N_2O_3$ $C_{13}H_{22}N_2O_3$	5 10
79 80	$N(CH_3)CH(CH_4)CH_{2^*}c^*C_6H_{11}$; 1 $N(CH_3)CH(CH_4)CH_{2^*}c^*C_6H_{11}$; 1	78 M 64 M	179–180 P–ET 194–196	- 14 W +1 W	CuH28N2O1+0.25H2O CuH28N2O2	
81 82	HN-e-C ₆ H ₁₁ HNCH(CH ₃)CH ₂ CH ₂ CH ₃	91 M 92 M	224–225 W 190–194 A W	+16 H +9 AC	$C_{10}H_{18}N_2O_3$ $C_5H_{18}N_2O_4 \cdot 0.5H_2O$	 0
83	HN(CH ₂) ₃ CH(CH ₄)CH ₃	89 M	222223 MW		$C_{10}H_{20}N_2O_3$	0
84 85	$HNCH(CH_3)CH_2CH(CH_3)CH_3; 1_{*}$ $HNCH(CH_3)CH_2CH(CH_3)CH_3; 0_{*}$	91 AC 92 AC	166–168 W 201–202 W	−17 M +9 M	$C_{10}H_{20}N_2O_3 \cdot 0$, $5H_2O$ $C_{10}H_{20}N_2O_3 \cdot 0$, $25H_2O$	
86 87	$HNCH(C_2H_3)CH_2CH_2CH_3$ $HN(CH_2)_3CH_3$	93 M 88 M	196-200 AW 200-201 W	+12 AC +9 AC	C ₁₈ H ₂₈ N ₂ O ₃ , H ₂ O C ₁₈ H ₂₈ N ₂ O ₃ , 0, 25H ₂ O	
88 89	HNCH(CH ₄) ₄ CH ₄ HN(CH ₄) ₆ CH ₄	98 M 89 M	188 -193 A -W 200-201 W	+11 AC +8 AC	$C_{10}H_{20}N_2O_3 \cdot 0.5H_2O$ $C_{11}H_{22}N_2O_3 \cdot 0.25H_2O$	30 +
90 91	HNCH(CH ₃)(CH ₂) ₄ CH ₂	95 M	190~194	± 7 AC	$C_{11}H_{22}N_2O_3$	20 +
92	$HNCH(CH_3)CH_2CH(CH_3)CH_2CH_2$ $HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3$	94 M 94 M	162–166 W 184–188 A–W	-2 M +9 AC	$C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$ $C_{11}H_{22}N_2O_5 \cdot 0.25H_2O$	50
93 94	$HNCH(C_2H_5)(CH_2)_3CH_3$ $HNCH(CH_3)(CH_2)_4CH_3;$ 1	98 M 94 M	190–195 187–189 W	+9 AC 5 M	$C_{11}H_{22}N_2O_3 \cdot 0$, 5H ₂ O $C_{12}H_{22}N_2O_3$, H ₂ O	4: 50
95 96	$HNCH(CH_3)(CH_2)_4CH_3; L^d$ $HNCH(CH_3)(CH_2)_4CH_3; D$	97 M 96 M	213-214 M-W 217-218 M-W	-5 M +5 M	$C_{11}H_{22}N_2O_3 + 05H_2O_3$ $C_{11}H_{22}N_2O_3$	
97 98	$HNCH(CH_3)(CH_2)_4CH_3; D^d$ $HNCH(CH_2)CH_2CH_2CH(CH_2)CH_3; L-$	97 M 84 M	189–192 W 187–190 W	$^{+6}_{+23}$ H	$C_{15}H_{22}N_2O_3$ $C_{13}H_{22}N_2O_3 + 0.5H_2O$	100
99 100	$HNCH(CH_8)CH_2CH_2CH(CH_8)CH_8; \ L^d$	99 M	215-216 M-W	+2 M -3 M	C_1 ; H_2 ; N_2 O ₃	0
101	$HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3; D-HNCH(CH_3)CH_2CH_2CH(CH_3)CH_3; D^4$	96 M 91 M	210–213 M–W 192–195 W	-26 H	$C_{11}H_{12}N_2O_3 \cdot 0.5H_2O$ $C_{11}H_{12}N_2O_3 \cdot 0.25H_2O$	+
102 103	HNCH(CH ₃)CH ₂ CH ₂ OCH ₂ CH ₃ HNCH(CH ₂)(CH ₂) ₃ CH ₃	77 M 85 M	166-170 M-ET 180-190	+3 M -8 M	$C_{10}H_{20}N_2O_4 \cdot 0.25H_2O \\ C_{12}H_{21}N_2O_3 \cdot 0.5H_2O$	10 10
⁴ See T ⁴ The ami	able I for abbreviations and explanations. de was derived from p-Asp. * All compound	^b The amies were analy	de was derived from zed for C, H, N.	i t-Glu. ≃Tl	he amide was deri ve d from	ntsAsp.
plac	atch (2016) "Locor e conditioning effer macology, Vol 27 (cts of	f MDAI i		,	
(ME meth MD stim psyc teste subs train intra	n abstract: "5,6-M DAI) has become a nylenedioxymethan AI is known to pro- nulus effects, but it chostimulant or hall ad for locomotor sti equently for discrim- ted to discriminate aperitoneally), meth- presitoneally, +MI	comr nphet oduc is no lucino mula ninat cocai	non subs tamine (M e MDMA t known ogen-like nt effects tive stimu ne (10 m hetamine	titute MDM A-like wheth e effec s in m alus e ag/kg, e (1 mg	for (±)-3,4- A) in Ecstas e discrimina her MDAI h ets. MDAI w ice and ffects in rats g/kg,	as 7as
	peritoneally), ±MI -)-2,5-dimethoxy-4		· –	-	-	• /

(0.5 mg/kg, intraperitoneally) from salineMDAI fully substituted for the discriminative stimulus effects of MDMA (2.5 mg/kg), (-)-2,5-dimethoxy-4- methylamphetamine hydrochloride (5 mg/kg), and cocaine (7.5 mg/kg), but produced only 73% methamphetamine- appropriate responding at a dose that suppressed responding (7.5 mg/kg). MDAI produced tremors at 10 mg/kg in one methamphetamine-trained rat. MDAI produced conditioned place preference from 0.3 to 10 mg/kg. The effects of MDAI on locomotor activity and drug discrimination were similar to those produced by MDMA, having both psychostimulant-like and hallucinogen-like effects; thus, MDAI may have similar abuse potential as MDMA. 5. Nichols (1986) "Synthesis and Evaluation of 2,3- Dihydrobenzofuran Analogues of the Hallucinogen 1-(2,5- Dimethoxy-4methylphenyl)-2-aminopropane: Drug Discrimination Studies in Rats" Vol. 29 (2): 302-304. From page 304, paragraph 2: "This is all the more difficult to explain in light of the fact that 2-methoxy-4,5- (methylenedioxy)amphetamine (8; MMDA-2) is active $H_3C \rightarrow NH_2$ $0 \rightarrow 0$ CH ₃ 8 and produces clear central effects at an oral dosage of 25
and produces clear central effects at an oral dosage of 25 mg of the hydrochloride"

P.O. Box 1450 Alexandria, VA 22313 - 1450

Page 1 of 4

exandria, VA 22313 - 1450 www.uspto.gov

ELECTRONIC ACKNOWLEDGEMENT RECEIPT

APPLICATION #	RECEIPT DATE / TIME	ATTORNEY DOCKET #
18/024,517	03/21/2024 11:28:58 AM Z ET	

Title of Invention

Application Information

APPLICATION TYPE

CONFIRMATION #

PATENT CENTER # 64778004

CUSTOMER # _

INTL. APPLICATION # -

CORRESPONDENCE - ADDRESS

Documents

TOTAL DOCUMENTS: 14

DOCUMENT		PAGES	DESCRIPTION	SIZE (KB)
Concise-description- generated.pdf		2	Concise Description of Relevance	32 KB
Third-party-notification- request.pdf		1	Request for Notification of Non-compliant Third-Party Submission	13 KB
third-party-preissuance- submission.pdf		3	Third-Party Submission Under 37 CFR 1.290	59 KB
US20230322743.pdf		55	-	844 KB
US20230322743- 3P.RELEVANCE.pdf	(1-55)	55	Concise Description of Relevance	827 KB
US20230322743- 3P.RELEVANCE.pdf	(1-55)	55	Concise Description of Relevance	827 KB

PATENT #

FILED BY Steven Schmid

FILING DATE 03/03/2023

FIRST NAMED INVENTOR

INTL. FILING DATE -

AUTHORIZED BY -

				Page 2 of 4
US20230322743- 3P.RELEVANCE.pdf	(1-55)	55	Concise Description of Relevance	827 KB
US20230322743- 3P.RELEVANCE.pdf	(1-1)	1	Concise Description of Relevance	128 KB
US20230322743- 3P.RELEVANCE.pdf	(1-55)	55	Concise Description of Relevance	827 KB
US20230322743- 3P.RELEVANCE.pdf	(1-55)	55	Concise Description of Relevance	827 KB
63115245 drawings_specification_claim s.pdf		45	-	3003 KB
63115245 drawings_specification_clai ms-NPL.pdf	(1-45)	45	Non Patent Literature	3001 KB
3. MAZUR.pdf		5	-	4367 KB
3. MAZUR-NPL.pdf	(1-5)	5	Non Patent Literature	4363 KB
4. GATCH.pdf		18	-	1084 KB
4. GATCH-NPL.pdf	(1-18)	18	Non Patent Literature	1084 KB
5. NICHOLS.pdf		3	-	2745 KB
5. NICHOLS-NPL.pdf	(1-3)	3	Non Patent Literature	2741 KB
6. BAHJI screenshot.pdf		15	-	4038 KB
6. BAHJI screenshot- NPL.pdf	(1-15)	15	Non Patent Literature	4034 KB

Digest

DOCUMENT	MESSAGE DIGEST(SHA-512)
Concise-description- generated.pdf	D7849C09FCDD294ACB71F3778F09832F9FDE04BE69A5F0802 8EC6333DF2FB28D5A73D3996099B781BE50DA704807487F10 BA3E20776FB7BAA037548006ABB5A6
Third-party-notification- request.pdf	19BEEED7C51A3CF9D5113451D3C4A95234B42BBCE31F9958 7F634219344D7D9985DCDBCE2CC854279796B21354CB6A182 926F585CF0874735D5B3B488B2C065F
third-party-preissuance- submission.pdf	E2A2B1945CFD8B775111AB8FB9F4FAC822A263E71A756581E 33C198367CC63F48FF5A4FE90446638E105E23CEB738357AA 96F2C98FD719F9E9B10336EAB620F6

Page 3 of 4

US20230322743.pdf

US20230322743-3P.RELEVANCE.pdf

US20230322743-3P.RELEVANCE.pdf

US20230322743-3P.RELEVANCE.pdf

US20230322743-3P.RELEVANCE.pdf

US20230322743-3P.RELEVANCE.pdf

US20230322743-3P.RELEVANCE.pdf

63115245 drawings_specification_claims. pdf

63115245 drawings_specification_claims-NPL.pdf

3. MAZUR.pdf

3. MAZUR-NPL.pdf

4. GATCH.pdf

4. GATCH-NPL.pdf

5. NICHOLS.pdf

8537782DD1CF5925F75092F494F59C700E072A40C28F6674B7 DE1DB442112E072A32FFB20E5124B893E61EA3496AAD92D4F 8580B5FF3BE45A467D24F398B3D7B

FB3B204F12DD5AD1ADB7A566273CA9518D0D3FC53B9728B0 2B1A59ED8203FF3D014B7184B0ADB4B8BA590C8AC349FCD0 B0E23C7B09450BDCA21E8079086458FB

D07C92CFFEBFF38FA78BC8EA145BB07617C8714CA4ACBE36 E7E66C9ACD9B50137C50FF667497ECDB78B72476E5846A5B2 F0BE81DF7E5744B10560046A9741011

E2A6304367D3B17A26B72CD71138DF219C4E0A30B08C42A5F 0B3FD0F385F3E1132101A8E213F19D48C6DC560A7A3CA511B 8AEA38FFE2A847E9BE9BFFEFBA316E

519FA069C597EBAB335D251770CAC6D9E642546606F56955C 854050B15B121450C5CA0D6DCB5A135A8096098FD519E521A DC2800EF000010D0FCB077FEEA251C

BFA7B240F2339E2B0790C9AB53C2CBF515E3215B9992BA840 63EAEAC040F255F03C864D7F3BE4C04AF25C9D3AB3A30C3A CB644E47304E10C65F4D39696B0AD76

4B840C7E4AC04B3319218F41745B1D1FC3E0A0B72F409979B 743ADA460C272C144EE6736B823CE47A377AD125939A8B1AE E39498DD493DA0EAAEAADE49BF0E47

F65CF308C36787C76A573C98DEFA77499E3416663FAD641F2 E93AAF65EAAA37CCBC20A10DE2A178CA3974BD2AAADFAE7 87005AD6F91A0B6B61A0524E76695B08

F0A424322B96CC64CA89F43AB202413053C13666F95D1EB60 D6D40AFE9BD6F105BF708D4F153F9DCC71E3A688BCB5378F A8FA605040C94E9E28B4312B3A5FB77

4560795F77F9DDA0B5938FE1A16E99084E70C7FD53690131F D7CF28399F6824AF65B8D99079A6D9AED4221D558DC9D8357 A5486951F9B9433E8BBDEFA9DEC5CA

0B32488C72824972F2FAAAE17ED2CECE5C49F0C5CD4CCF1 BD79709E77C6299DAECB4A63EF5E57A9AC1482CF109BFD2C 1F0A665FD087DD2BE71CA8DCE688946D7

0B89DFBF85699321B9AAA7036D68D777FC77662E08B5497A4 377E7ED2581140A401DD9EC3E0B80A0831B98C7553AFB9977 D0AB0F928801C2A0255915C99CDC6A

DBA648E1CB2187F3CDDD9B1CC0557B39E696EABCA51A0D7 5DD14F83B045AB38D95C6642F8B0C32BB229ADC9CD66CBF4 5BF2BE1B931BFA71D9472F3039AF15012

67D9B77D080EE5DEF081243F49794EEE89A30D31C75164986 0EEF5D378A5482B4006F7B1104C9DB9CE6553D56DB3E22AC

41AE8B6B9DE15C563414F2EAEF5F4F1

5. NICHOLS-NPL.pdf	6E1F1A6DDB6CC3DD0E462D0FF751E6245D4C7E7CB3C684A A25B91897CE78665665CF9E9CB23E7072226DF1E4EBEF5055 0E170E3D1FA1E96F8F666AD7CD03A43C
6. BAHJI screenshot.pdf	C98EED0288EEC2F08E33E6A3A4CFFB75671D7B42C759ACC6 53F9560743FCB0D347E5B248F02761FDA83E8DC739D238447 7C859C967189F785F814689B2BE4871
6. BAHJI screenshot-NPL.pdf	41861AD506641820640F9A3CADA4433B04237B99B100DDB49 01F8ADD4477A64E0AAEC1DE2E349E4709254EBA53964BD28 468655738A73EB2BE3E13A314850DE8

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.

P.O. Box 1450 Alexandria, VA 22313 - 1450 www.uspto.gov

ELECTRONIC PAYMENT RECEIPT

APPLICATION #	RECEIPT DATE / TIME	ATTORNEY DOCKET #
18/024,517	03/21/2024 11:28:58 AM Z ET	

Title of Invention

Application Information

APPLICATION TYPE		PATENT #	
CONFIRMATION #		FILED BY	Steven Schmid
PATENT CENTER #	64778004	AUTHORIZED BY	-
CUSTOMER #	_	FILING DATE	03/03/2023
INTL. APPLICATION #	-	INTL. FILING DATE	-
CORRESPONDENCE ADDRESS	-	FIRST NAMED INVENTOR	

Payment Information

		PAYMENT TRANSACT E20243KB30429611	TION ID PAYMENT AUTHORIZED BY Steven Schmid		ORIZED BY
FEE CODE	DESCRIPTION		ITEM PRICE(\$)	QUANTITY	ITEM TOTAL(\$)
2818	DOCUMENT FE PARTY SUBMIS CFR 1.290(F))		72.00	1	72.00
				TOTAL AMOUNT:	\$72.00

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents, characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for filing date (see 37 CFR 1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this Acknowledgement Receipt will establish the filing date of the application

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35 U.S.C.

371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of the application.